2.Primary central nervous system T-cell lymphoma in children and adolescents: a clinicopathological analysis of five cases.
Pei Zhu HU ; Heng Yan ZHANG ; Guan Nan WANG ; Wu Gan ZHAO ; Dan Dan ZHANG ; Wen Cai LI
Chinese Journal of Pathology 2023;52(1):37-42
Objective: To study the clinicopathological characteristics, and further understand primary central nervous system T-cell lymphoma (PCNSTCL) in children and adolescents. Methods: Five cases of PCNSTCL in children and adolescents were collected from December 2016 to December 2021 at the First Affiliated Hospital of Zhengzhou University. The clinicopathological characteristics, immunophenotypic, and molecular pathologic features were analyzed, and relevant literatures reviewed. Results: There were two male and three female patients with a median age of 14 years (range 11 to 18 years). There were two peripheral T-cell lymphomas, not otherwise specified, two anaplastic large cell lymphoma, ALK-positive and one NK/T cell lymphoma. Pathologically, the tumor cells showed a variable histomorphologic spectrum, including small, medium and large cells with diffuse growth pattern and perivascular accentuation. Immunohistochemistry and in situ hybridization showed CD3 expression in four cases, and CD3 was lost in one case. CD5 expression was lost in four cases and retained in one case. ALK and CD30 were expressed in two cases. One tumor expressed CD56 and Epstein-Barr virus-encoded RNA. All cases showed a cytotoxic phenotype with expression of TIA1 and granzyme B. Three cases had a high Ki-67 index (>50%). T-cell receptor (TCR) gene rearrangement was clonal in two cases. Conclusions: PCNSTCL is rare, especially in children and adolescents. The morphology of PCNSTCL is diverse. Immunohistochemistry and TCR gene rearrangement play important roles in the diagnosis.
Female
;
Humans
;
Male
;
Central Nervous System/pathology*
;
Central Nervous System Neoplasms/pathology*
;
Epstein-Barr Virus Infections
;
Herpesvirus 4, Human
;
Lymphoma, T-Cell/pathology*
;
Lymphoma, T-Cell, Peripheral/genetics*
;
Receptor Protein-Tyrosine Kinases/genetics*
;
Receptors, Antigen, T-Cell
;
Child
;
Adolescent
5.Role of N6-methyladenosine RNA methylation in central nervous system: a review.
Chinese Journal of Biotechnology 2023;39(1):45-59
There are a variety of post-transcriptional modifications in mRNA, which regulate the stability, splicing, translation, transport and other processes of mRNA, followed by affecting cell development, body immunity, learning and cognition and other important physiological functions. m6A modification is one of the most abundant post-transcriptional modifications widely existing in mRNA, regulating the metabolic activities of RNA and affecting gene expression. m6A modified homeostasis is critical for the development and maintenance of the nervous system. In recent years, m6A modification has been found in neurodegenerative diseases, mental diseases and brain tumors. This review summarizes the role of m6A methylation modification in the development, function and related diseases of the central nervous system in recent years, providing potential clinical therapeutic targets for neurological diseases.
Methylation
;
Central Nervous System/metabolism*
;
RNA, Messenger/metabolism*
;
RNA
6.Value of chromosomal microarray analysis for the diagnosis of fetuses with anomalies of central nervous system.
Peixuan CAO ; Xiangyu ZHU ; Leilei GU ; Wei LIU ; Jie LI
Chinese Journal of Medical Genetics 2023;40(2):181-185
OBJECTIVE:
To assess the value of chromosomal microarray analysis (CMA) for the diagnosis of fetuses with anomalies of the central nervous system (CNS) and summarize the outcome of the pregnancies and follow-up.
METHODS:
A total of 636 fetuses from June 2014 to December 2020 who were referred to the Prenatal Diagnosis Center of Nanjing Drum Tower Hospital due to abnormal CNS prompted by ultrasound were selected as the research subjects. Based on the ultrasound findings, the fetuses were divided into ventricular dilatation group (n = 441), choroid plexus cyst group (n = 41), enlarged posterior fossa group (n = 42), holoprosencephaly group (n = 15), corpus callosum hypoplasia group (n = 22), and other anomaly group (n = 75). Meanwhile, they were also divided into isolated (n = 504) and non-isolated (n = 132) groups based on the presence of additional abnormalities. Prenatal samples (amniotic fluid/chorionic villi/umbilical cord blood) or abortus tissue were collected for the extraction of genomic DNA and CMA assay. Outcome of the pregnancies and postnatal follow-up were summarized and subjected to statistical analysis.
RESULTS:
In total 636 fetuses with CNS anomalies (including 89 abortus tissues) were included, and 547 cases were followed up. The overall detection rate of CMA was 11.48% (73/636). The detection rates for the holoprosencephaly group, ACC group, choroid plexus cyst group, enlarged posterior fossa group, ventricular dilatation group and other anomaly group were 80% (12/15), 31.82% (7/22), 19.51% (8/41), 14.29% (6/42), 7.48% (33/441) and 9.33% (7/75), respectively. Compared with the isolated CNS anomaly group, the detection rate for the non-isolated CNS anomaly group was significantly higher (6.35% vs. 31.06%) (32/504 vs. 41/132) (χ² = 62.867, P < 0.001). Follow up showed that, for 52 fetuses with abnormal CMA results, 51 couples have opted induced labor, whilst 1 was delivered at full term with normal growth and development. Of the 434 fetuses with normal CMA results, 377 were delivered at full term (6 had developmental delay), and 57 couples had opted induced labor. The rate of adverse pregnancy outcome for non-isolated CNS abnormal fetuses was significantly higher than that of isolated CNS abnormal fetuses (26.56% vs. 10.54%) (17/64 vs. 39/370) (χ² = 12.463, P < 0.001).
CONCLUSION
Fetuses with CNS anomaly should be tested with CMA to determine the genetic cause. Most fetuses with negative CMA result have a good prognosis, but there is still a possibility for a abnormal neurological phenotype. Fetuses with CNS abnormalities in conjunct with other structural abnormalities are at increased risk for adverse pregnancy outcomes.
Female
;
Pregnancy
;
Humans
;
Holoprosencephaly
;
Prenatal Diagnosis/methods*
;
Central Nervous System
;
Fetus/abnormalities*
;
Nervous System Malformations/genetics*
;
Microarray Analysis
;
Central Nervous System Diseases
;
Cysts
;
Chromosome Aberrations
;
Ultrasonography, Prenatal/methods*
7.Research progress of fibroblast growth factor in nervous system diseases.
Wenting HUANG ; Wanhua QIU ; Kun CHEN ; Shasha YE ; Dongxue WANG ; Jian HU ; Huiqin XU ; Li LIN ; Xiaokun LI
Journal of Zhejiang University. Medical sciences 2023;51(6):738-749
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Humans
;
Fibroblast Growth Factors
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Central Nervous System/metabolism*
;
Signal Transduction/physiology*
;
Alzheimer Disease
8.Diagnosis Significance of the Levels of Cytokines IL-6, IL-10 and CXCL-13 in Cerebrospinal Fluid for Central Nervous System Infiltration of Lymphoma.
Li-Xin LIU ; Jing-Hua LIU ; Ji-Gang WANG ; Dan-Jiang TONG ; Guang-Han MENG ; Min-Yan LI ; Fan ZHOU
Journal of Experimental Hematology 2023;31(1):130-134
OBJECTIVE:
To evaluate the diagnostic value of the expression levels of cytokines interleukin-6(IL-6), interleukin-10 (IL-10) and chemokine (C-X-C motif) ligand-13 (CXCL-13) in cerebrospinal fluid (CSF) for central nervous system infiltration of lymphoma.
METHODS:
Forty patients diagnosed as lymphoma or acute lymphoblastic leukemia in General Hospital of Northern Theater Command from July 2020 to July 2021 were collected and recorded their CSF indexes, including pressure, protein, Pandy test, nucleated cell count, glucose and chlorine content in CSF. The levels of cytokines IL-6, IL-10 and CXCL-13 were detected by Enzyme-linked immunosorbent assay.
RESULTS:
The patients were divided into CNSI (central nervous system infiltration) group and non-CNSI group, the average levels of IL-6, IL-10, CXCL-13 and IL-10/IL-6 ratio in CNSI group were higher than those in non-CNS group, but the difference of IL-10/IL-6 ratio between the two groups was statistically significant (P<0.05). Then the patients were divided into protein elevated(n=14) group and protein normal group(n=26), the levels of IL-6 [ (5.78±2.69) pg/ ml] and CXCL-13 [(0.83±0.59) pg/ml] in protein elevated group were significantly higher than those in the protein normal group [IL-6: (2.41±1.16) pg/ml; CXCL-13: (0.38±0.18) pg/ml] (P<0.05). Further analysis of the expression levels of the cytokines in non-CNSI group (n=32), IL-6, IL-10, CXCL-13 level and IL-10/IL-6 ratio in the protein elevated group (n=12) were higher than those in the protein normal group (n=20), but the difference was not statistically significant.
CONCLUSION
The levels of IL-6, IL-10 and CXCL-13 in CSF of lymphoma patients with CNS infiltration were higher than those in non-CNS infiltration group, and those in patients with protein elevated group are higher than those in the protein normal group.
Humans
;
Central Nervous System
;
Cytokines
;
Interleukin-10
;
Interleukin-6
;
Lymphoma
9.Immunological Markers for Central Nervous System Glia.
Hao HUANG ; Wanjun HE ; Tao TANG ; Mengsheng QIU
Neuroscience Bulletin 2023;39(3):379-392
Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.
Neuroglia/metabolism*
;
Central Nervous System
;
Oligodendroglia/metabolism*
;
Astrocytes/metabolism*
;
Microglia
10.Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease.
Ying BAI ; Hui REN ; Liang BIAN ; You ZHOU ; Xinping WANG ; Zhongli XIONG ; Ziqi LIU ; Bing HAN ; Honghong YAO
Neuroscience Bulletin 2023;39(3):440-452
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Humans
;
RNA, Untranslated/genetics*
;
MicroRNAs/genetics*
;
RNA, Long Noncoding/genetics*
;
RNA, Circular
;
Central Nervous System Diseases/genetics*

Result Analysis
Print
Save
E-mail