1.Associations of serum carotene levels and decline for the ability of attention: a longitudinal study in the Japanese general population.
Hiroshi OKUMIYAMA ; Yoshiki TSUBOI ; Ryosuke FUJII ; Akihiko IWAHARA ; Takeshi HATTA ; Shuntaro SATO ; Hiroya YAMADA ; Koji SUZUKI
Environmental Health and Preventive Medicine 2025;30():58-58
BACKGROUND:
Although serum carotene may contribute to dementia prevention, there is a lack of longitudinal evidence for early cognitive decline before dementia symptoms. The aim of this study was to examine whether serum carotene levels were associated with annually evaluated cognitive trajectories among the Japanese general population.
METHODS:
Among 581 baseline participants, 199 individuals (83 males; mean age [min, max], 62.7 [39, 90] years) who underwent cognitive assessments more than twice after baseline were analyzed. "Attention" levels were assessed using one- and three-target Digit Cancellation Tests (D-CAT1 and D-CAT3). "General cognitive ability" was assessed by the short version of Mini-Mental State Examination (SMMSE). Serum carotenes (α-carotene, β-carotene and lycopene) were measured by high-performance liquid chromatography. After the measurements, we calculated total carotene levels by summing up the levels of all measured carotene. Carotene levels were categorized into three groups for analysis (low: 0%-25%, middle: 25%-75%, and high: 75%-100%). A linear mixed model was used to estimate the slope of the D-CAT score trajectory and to compare it between three categories.
RESULTS:
Compared with the middle carotene group, decline of attention was faster in the D-CAT1 for low β-carotene (β = -3.48, p = 0.035), lycopene (β = -3.10, p = 0.062), and total carotene (β = -4.75, p = 0.003), but not for α-carotene (β = -2.60, p = 0.111). For the D-CAT3, decline of attention was faster in the group of low lycopene (β = -3.17, p = 0.002) and total carotene (β = -2.17, p = 0.037) compared with the middle carotene group, while no clear association for α-carotene (β = -0.67, p = 0.521) and β-carotene (β = -0.64, p = 0.639). There were no clear associations between serum carotene and the SMMSE score.
CONCLUSIONS
These findings suggest low levels of serum lycopene are associated with a decline of attention in the setting of the general population.
Humans
;
Male
;
Carotenoids/blood*
;
Female
;
Longitudinal Studies
;
Middle Aged
;
Japan
;
Aged
;
Adult
;
Aged, 80 and over
;
Attention
;
Lycopene
;
East Asian People
2.Crocin Inhibited Aβ Generation via Modulating APP Processing, Suppressing Endoplasmic Reticulum Stress and Activating Autophagy in N2a/APP Cells.
Zi-Rong LIANG ; Cui-Jun LIN ; Yi-Han LIU ; Qian YUE ; Pui Man HOI
Chinese journal of integrative medicine 2025;31(11):973-981
OBJECTIVE:
To explore the mechanism of crocin, a major active component of Crocus sativus (Zanghonghua), in regulating amyloid beta (Aβ) generation, endoplasmic reticulum (ER) stress, and autophagy in neuronal cells, with potential therapeutic applications in Alzheimer's disease (AD).
METHODS:
Mouse neuroblastoma Neuron2a (N2a) cells stably transfected with the human amyloid precursor protein (APP) Swedish mutant was used as a cellular model for AD (N2a/APP). Control cells were vector transfected (N2a/vector). The effects of 3 different doses of crocin on reactive oxygen species (ROS) generation, cytosolic calcium, and apoptosis were evaluated by flow cytometry. Aβ levels were determined by enzyme-linked immunosorbent assay. APP processing and ER stress proteins expressions were determined by Western blot. Autophagosome formation was evaluated by autophagy detection kit and confocal microscope.
RESULTS:
Crocin inhibited APP expression in N2a/APP cells and promoted α-cleavage of APP processing, while modestly reduced beta-secretase 1 (BACE1) and presenilin 1 (PS1, P<0.05 or P<0.01). ER stress markers, including the binding immunoglobulin protein/78-kD glucose-regulated protein (Bip/GRP78) and C/EBP homologous protein (CHOP), were elevated in N2a/APP cells compared to N2a/vector cells (P<0.05). Crocin could effectively reduce the levels of ER stress (P<0.05 or P<0.01). In addition, crocin enhanced autophagy by promoting formation of autophagosome (P<0.05 or P<0.01).
CONCLUSION
Crocin significantly inhibited Aβ generation by promoting α-cleavage of APP processing, inhibiting ER stress-associated unfolded protein response, and regulating autophagy.
Endoplasmic Reticulum Stress/drug effects*
;
Autophagy/drug effects*
;
Animals
;
Endoplasmic Reticulum Chaperone BiP
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Carotenoids/pharmacology*
;
Humans
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Calcium/metabolism*
3.Multi-omics analysis of hormesis effect of lanthanum chloride on carotenoid synthesis in Rhodotorula mucilaginosa.
Hong ZHANG ; Tong WEN ; Zhihong WANG ; Xin ZHAO ; Hao WU ; Pengcheng XIANG ; Yong MA
Chinese Journal of Biotechnology 2025;41(4):1631-1648
Hormesis effect has been observed in the secondary metabolite synthesis of microorganisms induced by rare earth elements. However, the underlying molecular mechanism remains unclear. To analyze the molecular mechanism of the regulatory effect of Rhodotorula mucilaginosa in the presence of lanthanum chloride, different concentrations of lanthanum chloride were added to the fermentation medium of Rhodotorula mucilaginosa, and the carotenoid content was subsequently measured. It was found that the concentrations of La3+ exerting the promotional and inhibitory effects were 0-100 mg/L and 100-400 mg/L, respectively. Furthermore, the expression of 33 genes and the synthesis of 55 metabolites were observed to be up-regulated, while the expression of 85 genes and the synthesis of 123 metabolites were found to be down-regulated at the concentration range of the promotional effect. Notably, the expression of carotenoid synthesis-related genes except AL1 was up-regulated. Additionally, the content of β-carotene, lycopene, and astaxanthin demonstrated increases of 10.74%, 5.02%, and 3.22%, respectively. The expression of 5 genes and the synthesis of 91 metabolites were up-regulated, while the expression of 35 genes and the synthesis of 138 metabolites were down-regulated at the concentration range of the inhibitory effect. Meanwhile, the content of β-carotene, lycopene, and astaxanthin decreased by 21.73%, 34.81%, and 35.51%, respectively. In summary, appropriate concentrations of rare earth ions can regulate the synthesis of secondary metabolites by modulating the activities of various enzymes involved in metabolic pathways, thereby exerting the hormesis effect. The findings of this study not only contribute to our comprehension for the mechanism of rare earth elements in organisms but also offer a promising avenue for the utilization of rare earth elements in diverse fields, including agriculture, pharmaceuticals, and healthcare.
Lanthanum/pharmacology*
;
Rhodotorula/genetics*
;
Carotenoids/metabolism*
;
Hormesis/drug effects*
;
Fermentation
;
Multiomics
4.Carotenoid components and their biosynthesis in a bud mutant of Shiranui mandarin (Citrus reticulata Blanco) with citrine flavedo.
Xun WANG ; Jinqiu HUANG ; Zongyan YIN ; Ke XU ; Dong JIANG ; Lijin LIN ; Xiaoai ZHANG ; Zhihui WANG
Journal of Zhejiang University. Science. B 2023;24(1):94-100
Carotenoids are secondary metabolite responsible for colored pigments in plants and microbes (Li et al., 2022). They are a class of C40 tetraterpenoids consisting of eight isoprenoid units, and can be classified into carotenes and xanthophylls on the basis of their functional groups (Saini et al., 2015). Carotenes can be linear (phytoene, phytofluene, and ζ-carotene) or branched (β-carotene and α-carotene). Xanthophylls comprise β,β-xanthophylls (β-cryptoxanthin, zeaxanthin, violaxanthins, and neoxanthin) and β,ε-xanthophylls (α-cryptoxanthin, α-carotene, and lutein). Citrus fruits are complex sources of carotenoids, which are the principal pigments responsible for the typical orange color of most types (Chen, 2020). The difference in total carotenoid content and the diversity of carotenoid isomer proportion also accounts for other colors of citrus fruits, such as yellow, red, and pink (Chen, 2020).
Citrus/metabolism*
;
Carotenoids
;
Xanthophylls
;
Lutein/metabolism*
;
Zeaxanthins/metabolism*
;
Fruit
5.Qualitative and quantitative analysis on crocins in fruits of Gardenia species.
Xiao YE ; Dong ZHANG ; Wei-Hong FENG ; Yao-Hua LIANG ; Xiao-Qian LIU ; Chun LI ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2022;47(16):4377-4384
The aim of this study was to compare crocins in the fruit of Gardenia jasminoides and Gardenia jasminoides var. radicans. Acchrom XCharge C_(18) column(4.6 mm×250 mm, 5 μm) was used for separation, with mobile phase of acetonitrile and 0.1% formic acid for gradient elution. The detection wavelength was set at 440 nm with a flow rate of 1.0 mL·min~(-1), and the column temperature was 30 ℃. The high performance liquid chromatography(HPLC) fingerprint of crocin in Gardenia species was established by testing 20 batches of G. jasminoides and 8 batches of G. jasminoides var. radicans samples from different sources, and UHPLC-ESI-Orbitrap-MS/MS technology and reference substances were used to predict and identify the common peaks. The results showed that 20 common chromatographic peaks from the samples were selected and the structures of 16 common peaks were predicted by mass spectrum. Four common peaks(crocin Ⅰ, Ⅱ, Ⅲ, and Ⅳ) were identified by the comparison with reference substances. The content of crocin Ⅰ, Ⅱ, Ⅲ, and Ⅳ was determined simultaneously under the same chromatographic condition, and both the system suitability and the methodological investigation results met the requirements of content determination. The relative similarity of HPLC fingerprint of 28 samples to the reference fingerprint was above 0.98. The results of cluster analysis(CA) showed that G. jasminoides and G. jasminoides var. radicans were separately grouped into one group. In the 20 batches of G. jasminoides, the content of crocin Ⅰ, Ⅱ, Ⅳ, and Ⅲ was between 3.58-9.58, 0.230-1.452, 0.014 5-0.135, and 0.301-1.12 mg·g~(-1), respectively, and the total content was between 4.12-12.25 mg·g~(-1). In the 8 batches of G. jasminoides var. radicans, the content of crocin Ⅰ, Ⅱ, Ⅳ, and Ⅲ was between 5.84-11.48, 0.308-0.898, 0.010 6-0.025 5, and 0.675-1.34 mg·g~(-1), respectively, and the total content was between 6.97-13.72 mg·g~(-1). The existing results showed that there is a certain similarity between G. jasminoides and G. jasminoides var. radicans in the composition of crocin, which needs further proved by more batches of samples. The method established in this paper provides references for the quality control of G. jasminoides, G. jasminoides var. radicans, and related products.
Carotenoids/analysis*
;
Chromatography, High Pressure Liquid/methods*
;
Fruit/chemistry*
;
Gardenia/chemistry*
;
Tandem Mass Spectrometry
6.Effects of Cas9 expression on cell growth and production of natural products in Saccharomyces cerevisiae and optimization of CRISPR-Cas9 editing system.
Hao TANG ; Ya-Tian CHENG ; Juan GUO ; Ji-Chen BAO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2022;47(15):4066-4073
CRISPR-Cas9 gene editing technology has been widely used in Saccharomyces cerevisiae.However, the effects of Cas9, as an exogenous protein, on the growth and production of natural products in S.cerevisiae are still unclear.In this study, Cas9 gene was expressed in S.cerevisiae by integration into the genome and construction into vectors, and two natural products, carotenoid and miltiradiene, were selected as the target products to study the effects of Cas9 expression on yeast growth and production capacity.The results showed that whether Cas9 was integrated into the genome or expressed by vectors, Cas9 inhibited the growth of S.cerevisiae, which was more obvious in the form of genome integration.When Cas9 was integrated into the genome, it had no effect on the production of carotenoid and miltiradiene by S.cerevisiae, but when Cas9 was expressed by vectors, the ability of S.cerevisiae to produce carotenoids and miltiradiene was significantly reduced.Therefore, in order to further efficiently knock out Cas9 after gene editing and minimize the adverse impact of Ura3 and Trp1 vectors, this study systematically explored the removal efficiency of the two vectors, and a plasmid capable of efficient gene editing was constructed, which optimized the application of CRISPR-Cas9 gene editing system in S.cerevisiae, and provided reference for the application of gene editing technology based on Cas9.
Biological Products
;
CRISPR-Cas Systems
;
Carotenoids/metabolism*
;
Gene Editing/methods*
;
Saccharomyces cerevisiae/metabolism*
7.Analysis of TSC2 gene variant in a neonate with tuberous sclerosis complex.
Chinese Journal of Medical Genetics 2022;39(12):1390-1392
OBJECTIVE:
To explore the clinical characteristics and genetic variant in a neonate with tuberous sclerosis complex (TSC).
METHODS:
Clinical data of the neonate was collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents and subjected to next-generation sequencing (NGS).
RESULTS:
The child was noted to have yellowish hair upon birth. NGS revealed that he has harbored a heterozygous c.3914del (p.P1305Rfs*20) frameshifting variant of the TSC2 gene. The variant has probably caused premature termination of translation, resulting in a truncated protein.
CONCLUSION
Yellowish hair has rarely been described as the first manifestation of TSC. The c.3914del (p.P1305Rfs*20) variant of the TSC2 gene probably underlay the TSC in this patient.
Male
;
Infant, Newborn
;
Humans
;
Tuberous Sclerosis/genetics*
;
Family
;
Carotenoids
;
Heterozygote
8.Advances in the biosynthesis and application of bixin.
Qian LOU ; Xiangdong PU ; Jingyuan SONG
Chinese Journal of Biotechnology 2021;37(6):1986-1997
Since synthetic pigments are potentially harmful to human health, natural ones such as bixin, one of the carotenoids, are favored. As the second widely used natural pigment in the world, there is significant interest in the biosynthetic pathway of bixin which has not been fully elucidated. This review summarizes the chemical properties, extraction methods, biosynthetic pathway and application of bixin. In addition, we compared the difference between traditional extraction methods and new extraction techniques. Moreover, we described the genes involved in the biosynthetic pathway of bixin and the effects of abiotic stress on the biosynthesis of bixin, and discussed the application of bixin in food, pharmaceutical and chemical industries. However, the researches on bixin biosynthesis pathway are mostly carried out at the transcriptome level and most of the gene functions have not been elucidated. Therefore, we propose to characterize the entire bixin biosynthetic pathway using techniques of genomics, bioinformatics, and phytochemistry. This will help facilitate the synthetic biology research of bixin and development of bixin into new drugs.
Bixaceae/genetics*
;
Carotenoids
;
Humans
;
Pigmentation
;
Transcriptome
9.Effects of different storage conditions on edible quality and antioxidant activity of Polygonatum cyrtonema flowers.
Yue LI ; Pei ZHANG ; Run YU ; Run-Ze CHEN ; Jin-Ping SI ; Xin-Feng ZHANG
China Journal of Chinese Materia Medica 2021;46(12):3091-3101
The flower of Polygonatum cyrtonema has good edible and medicinal values. In this study, four samples of P. cyrtonema flowers from different regions were selected as test materials. The contents, composition and antioxidant activities of lipid-soluble pigments and alcohol-soluble components were determined under different light and temperature conditions, which help to reveal the discoloration reason and the composition variation patterns during storage. The results showed that light and temperature had different effects on the lipid-soluble pigments and alcohol-soluble components in the dried flowers during storage. After storage for 4 weeks, the contents of total chlorophyll, carotenoids, phenols and saponins in the samples exposed to light respectively decreased by 62.62%, 66.4%, 68.7% and 43.4% compared with those in the dark. The decreases in the contents of chlorophyll a, chlorophyll b, lutein, β-carotene and zeaxanthin were 64.64%, 56.74%, 59.2%, 77.7% and 45.4%, respectively. The contents of pigments and components in the samples stored at-20 ℃ were significantly higher than those at room temperature and 4 ℃, indicating that low temperature was conductive to the stability of lipid-soluble pigments and alcohol-soluble components. The samples stored at low temperature and in the dark had the strongest free radical scavenging activity. The results suggest that P. cyrtonema dried flowers should be stored in low temperature environment without light, which can slow down the degradation of internal components. The study provides a theoretical basis for the production, processing and storage of P. cyrtonema flowers.
Antioxidants
;
Carotenoids
;
Chlorophyll A
;
Flowers
;
Polygonatum
10.Divergent effects of lycopene on pancreatic alpha and beta cells.
Wei-Huang LIU ; Qiao-Na WANG ; Ying ZHOU ; Yan-Jun WANG ; Zan TONG
Acta Physiologica Sinica 2020;72(2):133-138
Lycopene is an antioxidant which has potential anti-diabetic activity, but the cellular mechanisms have not been clarified. In this study, different concentrations of lycopene were used to treat pancreatic alpha and beta cell lines, and the changes of cell growth, cell apoptosis, cell cycle, reactive oxygen species (ROS), ATP levels and expression of related cytokines were determined. The results exhibited that lycopene did not affect cell growth, cell apoptosis, cell cycle, ROS and ATP levels of alpha cells, while it promoted the growth of beta cells, increased the ratio of S phase, reduced the ROS levels and increased the ATP levels of beta cells. At the same time, lycopene treatment elevated the mRNA expression levels of tnfα, tgfβ and hif1α in beta cells. These findings suggest that lycopene plays cell-specific role and activates pancreatic beta cells, supporting its application in diabetes therapy.
Adenosine Triphosphate
;
metabolism
;
Apoptosis
;
Carotenoids
;
pharmacology
;
Cell Cycle
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Glucagon-Secreting Cells
;
drug effects
;
Humans
;
Insulin-Secreting Cells
;
drug effects
;
Lycopene
;
pharmacology
;
Reactive Oxygen Species
;
metabolism

Result Analysis
Print
Save
E-mail