1.Status and challenges of neoadjuvant immunotherapy for hepatocellular carcinoma.
Yong Xiang XIA ; Heng Song CAO ; Wei Wei TANG ; Xue Hao WANG
Chinese Journal of Surgery 2023;61(1):7-12
With the development of modern liver surgical techniques and the progress of perioperative management,the survival rate after resection of hepatocellular carcinoma has been greatly improved,but the high recurrence and metastasis rate still limits the long-term survival after surgery. Preoperative neoadjuvant therapy has been confirmed to significantly reduce the postoperative recurrence rate and prolong survival in other types of cancer,but there has been a lack of effective systemic therapy for hepatocellular carcinoma for a long time,so the efficacy and regimen of neoadjuvant therapy for hepatocellular carcinoma are still controversial. PD-1/PD-L1 monoclonal antibody combined with anti-angiogenic targeted drugs has become a first-line regimen in systemic therapy for advanced hepatocellular carcinoma. This regimen has definite efficacy and high safety,bringing hope for neoadjuvant therapy of hepatocellular carcinoma. Recently,three clinical trials of neoadjuvant immunotherapy for hepatocellular carcinoma have been published internationally,which preliminarily suggest the efficacy and safety of neoadjuvant immunotherapy for hepatocellular carcinoma and lay a solid foundation for carrying out larger sample clinical studies in the future.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Neoadjuvant Therapy
;
Liver Neoplasms/pathology*
;
Immunotherapy
2.Establishment and validation of a preoperative nomogram model for predicting the risk of hepatocellular carcinoma with microvascular invasion.
Rui Qian GAO ; Kun LI ; Jing Han SUN ; Yong Hui MA ; Xiang Yu XU ; Yu Wei XIE ; Jing Yu CAO
Chinese Journal of Surgery 2023;61(1):41-47
Objective: To establish and validate a nomogram model for predicting the risk of microvascular invasion(MVI) in hepatocellular carcinoma. Methods: The clinical data of 210 patients with hepatocellular carcinoma who underwent hepatectomy at Department of Hepatobiliary and Pancreatic Surgery,the Affiliated Hospital of Qingdao University from January 2013 to October 2021 were retrospectively analyzed. There were 169 males and 41 females, aged(M(IQR)) 57(12)years(range:30 to 80 years). The patients were divided into model group(the first 170 cases) and validation group(the last 40 cases) according to visit time. Based on the clinical data of the model group,rank-sum test and multivariate Logistic regression analysis were used to screen out the independent related factors of MVI. R software was used to establish a nomogram model to predict the preoperative MVI risk of hepatocellular carcinoma,and the validation group data were used for external validation. Results: Based on the modeling group data,the receiver operating characteristic curve was used to determine that cut-off value of DeRitis ratio,γ-glutamyltransferase(GGT) concentration,the inverse number of activated peripheral blood T cell ratio (-aPBTLR) and the maximum tumor diameter for predicting MVI, which was 0.95((area under curve, AUC)=0.634, 95%CI: 0.549 to 0.719), 38.2 U/L(AUC=0.604, 95%CI: 0.518 to 0.689),-6.05%(AUC=0.660, 95%CI: 0.578 to 0.742),4 cm(AUC=0.618, 95%CI: 0.533 to 0.703), respectively. Univariate and multivariate Logistic regression analysis showed that DeRitis≥0.95,GGT concentration ≥38.2 U/L,-aPBTLR>-6.05% and the maximum tumor diameter ≥4 cm were independent related factors for MVI in hepatocellular carcinoma patients(all P<0.05). The nomogram prediction model based on the above four factors established by R software has good prediction efficiency. The C-index was 0.758 and 0.751 in the model group and the validation group,respectively. Decision curve analysis and clinical impact curve showed that the nomogram model had good clinical benefits. Conclusions: DeRitis ratio,serum GGT concentration,-aPBTLR and the maximum tumor diameter are valuable factors for preoperative prediction of hepatocellular carcinoma with MVI. A relatively reliable nomogram prediction model could be established on them.
Female
;
Humans
;
Male
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Neoplasm Invasiveness
;
Nomograms
;
Retrospective Studies
;
Risk Factors
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
3.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
OBJECTIVE:
Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
METHODS:
The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
RESULTS:
The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
CONCLUSION
PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
beta Catenin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Cell Line
;
Cell Proliferation
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Calcium-Binding Proteins/metabolism*
;
Apoptosis Regulatory Proteins/genetics*
4.Fontan-associated liver disease current status and transplantation consideration.
Xiang LIU ; Jia Zi Chao TU ; Yun TENG ; Ji Mei CHEN
Chinese Journal of Hepatology 2023;31(1):109-112
Fontan-associated liver disease (FALD) is one of the main complications after the Fontan procedure, manifesting mostly as liver fibrosis and even cirrhosis, with a high incidence rate and a lack of typical clinical symptoms that seriously affect patient prognosis. The specific cause is unknown, although it is considered to be associated with long-term elevated central venous pressure, impaired hepatic artery blood flow, and other relevant factors. The absence of association between laboratory tests, imaging data, and the severity of liver fibrosis makes clinical diagnosis and monitoring difficult. A liver biopsy is the gold standard for diagnosing and staging liver fibrosis. The most important risk factor for FALD is time following the Fontan procedure; therefore, it is recommended to do a liver biopsy 10 years after the Fontan procedure and to be cautious for the presence of hepatocellular carcinoma. Combined heart-liver transplantation is a recommended choice with favorable outcomes for patients with Fontan circulatory failure and severe hepatic fibrosis.
Humans
;
Liver Diseases/pathology*
;
Liver Cirrhosis/pathology*
;
Liver/pathology*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Transplantation/adverse effects*
;
Fontan Procedure/adverse effects*
;
Postoperative Complications/pathology*
;
Liver Neoplasms/pathology*
5.Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways.
Qiong ZHAO ; Luwen ZHANG ; Qiufen HE ; Hui CHANG ; Zhiqiang WANG ; Hongcui CAO ; Ying ZHOU ; Ruolang PAN ; Ye CHEN
Journal of Zhejiang University. Science. B 2023;24(1):50-63
Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Cell Hypoxia
;
Cell Line, Tumor
;
Gene Expression Regulation, Neoplastic
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Liver Neoplasms/pathology*
;
Signal Transduction/genetics*
;
tRNA Methyltransferases/metabolism*
6.Advances in post-operative prognostic models for hepatocellular carcinoma.
Ziqin HE ; Xiaomin SHE ; Ziyu LIU ; Xing GAO ; L U LU ; Julu HUANG ; Cheng LU ; Yan LIN ; Rong LIANG ; Jiazhou YE
Journal of Zhejiang University. Science. B 2023;24(3):191-206
Hepatocellular carcinoma (HCC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Surgery remains the primary and most successful therapy option for the treatment of early- and mid-stage HCCs, but the high heterogeneity of HCC renders prognostic prediction challenging. The construction of relevant prognostic models helps to stratify the prognosis of surgically treated patients and guide personalized clinical decision-making, thereby improving patient survival rates. Currently, the prognostic assessment of HCC is based on several commonly used staging systems, such as Tumor-Node-Metastasis (TNM), Cancer of the Liver Italian Program (CLIP), and Barcelona Clinic Liver Cancer (BCLC). Given the insufficiency of these staging systems and the aim to improve the accuracy of prognostic prediction, researchers have incorporated further prognostic factors, such as microvascular infiltration, and proposed some new prognostic models for HCC. To provide insights into the prospects of clinical oncology research, this review describes the commonly used HCC staging systems and new models proposed in recent years.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Prognosis
;
Neoplasm Staging
;
Survival Rate
;
Retrospective Studies
7.Expert consensus on precise diagnosis and management of primary hepatocellular carcinoma in advanced stage (2023 version).
Chinese Journal of Hepatology 2023;31(9):910-920
not matching with chinese abstract stage in China. By adopting the "Delphi" consensus formation method, a set of precise staging criteria and corresponding preferred treatment protocols were agreed upon for Chinese patients with hepatocellular carcinoma in advanced stage, taking into account different tumor characteristics, vascular embolism grading, distant metastasis and liver function status, portal hypertension, hepatitis B virus replication status, etc., as well as the prognosis of the patients. This consensus is intended to provide a more detailed, scientific, and reasonable reference basis for the selection of individualized diagnosis and treatment plans for frontline clinicians.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Consensus
;
Prognosis
;
China
8.5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I.
Chengdong WU ; Dekai LIU ; Lufei ZHANG ; Jingjie WANG ; Yuan DING ; Zhongquan SUN ; Weilin WANG
Frontiers of Medicine 2023;17(3):476-492
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Eukaryotic Initiation Factor-4A/genetics*
;
Cell Line
;
RNA, Transfer/metabolism*
;
RNA
;
Cell Proliferation
9.Polygalacin D inhibits the growth of hepatocellular carcinoma cells through BNIP3L-mediated mitophagy and endogenous apoptosis pathways.
Fulong NAN ; Wenlong NAN ; Zhongjie YU ; Hui WANG ; Xiaoni CUI ; Shasha JIANG ; Xianjuan ZHANG ; Jun LI ; Zhifei WANG ; Shuyun ZHANG ; Bin WANG ; Yiquan LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):346-358
Platycodon grandiflorum (Jacq.) A. DC. is a famous medicinal plant commonly used in East Asia. Triterpene saponins isolated from P. grandiflorum are the main biologically active compounds, among which polygalacin D (PGD) has been reported to be an anti-tumor agent. However, its anti-tumor mechanism against hepatocellular carcinoma is unknown. This study aimed to explore the inhibitory effect of PGD in hepatocellular carcinoma cells and related mechanisms of action. We found that PGD exerted significant inhibitory effect on hepatocellular carcinoma cells through apoptosis and autophagy. Analysis of the expression of apoptosis-related proteins and autophagy-related proteins revealed that this phenomenon was attributed to the mitochondrial apoptosis and mitophagy pathways. Subsequently, using specific inhibitors, we found that apoptosis and autophagy had mutually reinforcing effects. In addition, further analysis of autophagy showed that PGD induced mitophagy by increasing BCL2 interacting protein 3 like (BNIP3L) levels.In vivo experiments demonstrated that PGD significantly inhibited tumor growth and increased the levels of apoptosis and autophagy in tumors. Overall, our findings showed that PGD induced cell death of hepatocellular carcinoma cells primarily through mitochondrial apoptosis and mitophagy pathways. Therefore, PGD can be used as an apoptosis and autophagy agonist in the research and development of antitumor agents.
Humans
;
Mitophagy
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Cell Line
;
Autophagy
;
Apoptosis
;
Membrane Proteins
;
Proto-Oncogene Proteins/genetics*
;
Tumor Suppressor Proteins/pharmacology*

Result Analysis
Print
Save
E-mail