1.Development of a new paradigm for precision diagnosis and treatment in traditional Chinese medicine
Jingnian NI ; Mingqing WEI ; Ting LI ; Jing SHI ; Wei XIAO ; Jing CHENG ; Bin CONG ; Boli ZHANG ; Jinzhou TIAN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):43-47
The development of traditional Chinese medicine (TCM) diagnosis and treatment has undergone multiple paradigms, evolving from sporadic experiential practices to systematic approaches in syndrome differentiation and treatment and further integration of disease and syndrome frameworks. TCM is a vital component of the medical system, valued alongside Western medicine. Treatment based on syndrome differentiation embodies both personalized treatment and holistic approaches; however, the inconsistency and lack of stability in syndrome differentiation limit clinical efficacy. The existing integration of diseases and syndromes primarily relies on patchwork and embedded systems, where the full advantages of synergy between Chinese and Western medicine are not fully realized. Recently, driven by the development of diagnosis and treatment concepts and advances in analytical technology, Western medicine has been rapidly transforming from a traditional biological model to a precision medicine model. TCM faces a similar need to progress beyond traditional syndrome differentiation and disease-syndrome integration toward a more precise diagnosis and treatment paradigm. Unlike the micro-level precision trend of Western medicine, precision diagnosis and treatment in TCM is primarily reflected in data-driven applications that incorporate information at various levels, including precise syndrome differentiation, medication, disease management, and efficacy evaluation. The current priority is to accelerate the development of TCM precision diagnosis and treatment technology platforms and advance discipline construction in this area.
2.Establishment and verification of gas chromatography method for determination of 2-phenoxyethanol in Sabin inactivated poliovirus vaccine(Vero cells)
Chinese Journal of Biologicals 2025;38(04):457-461
Objective To establish and verify a gas chromatography(GC) method for the determination of 2-phenoxyethanol content in Sabin inactivated poliovirus vaccine(sIPV)(Vero cells), thereby providing a reliable approach for detecting 2-phenoxyethanol content in biological products. Methods A polyethylene glycol(PEG) GC column(30 m × 0. 25 mm ×0. 25 μm) was employed for the determination of 2-phenoxyethanol content. The chromatographic conditions were as follows:nitrogen as the carrier gas, an injection volume of 1 μL, a split ratio of 1∶ 10, and a carrier gas flow rate of 1 mL/min.The temperature program was set with an initial column temperature of 90 ℃, followed by a ramp at a rate of 10 ℃ per minute to 220 ℃, which was maintained for 10 minutes. The signal was collected by flame ionization detector(FID). The method was verified for the linear range, repeatability, accuracy, and specificity. The established GC method and high-performance liquid chromatography(HPLC) were used to analyze 2-phenoxyethanol content in three batches of sIPV(Vero cells)respectively, and the results were compared. Results The reference solution exhibited a good linear relationship with the peak area in the concentration range of 0. 2-1. 0 mg/mL, with the linear equation: y = 4 021. 44 x + 97. 07, R2= 0. 998. The relative standard deviation(RSD) of 2-phenoxyethanol content in six test solutions was less than 2. 0%. The spiked recovery rates of high, medium, and low concentrations of 2-phenoxyethanol in nine test samples ranged from 90% to 110%. Both the reference and test solutions showed a distinct chromatographic peak for 2-phenoxyethanol at 9. 1 min, while no such peak was observed in the negative control, indicating no interference with the test samples. The mean 2-phenoxyethanol content in three batches of test samples, as determined by GC and HPLC, was(4. 990 ± 0. 175) and(4. 986 ± 0. 122) mg/mL, respectively, with no statistically significant difference(t = 0. 045 6, P = 0. 967 8). Conclusion The established GC method demonstrates good repeatability, accuracy, and specificity, showing potential as a viable alternative to HPLC for the quantification of 2-phenoxyethanol.
3.Setup Error and Its Influencing Factors in Radiotherapy for Spinal Metastasis
Wenhua QIN ; Xin FENG ; Zengzhou WANG ; Shangnan CHU ; Hong WANG ; Shiyu WU ; Cheng CHEN ; Fukui HUAN ; Bin LIANG ; Tao ZHANG
Cancer Research on Prevention and Treatment 2025;52(5):400-404
Objective To investigate the setup error in patients with spinal bone metastasis who underwent radiotherapy under the guidance of kilovoltage cone-beam CT (KV-CBCT). Methods A total of 118 patients with spinal metastasis who underwent radiotherapy, including 17 cases of cervical spine, 62 cases of thoracic spine, and 39 cases of lumbar spine, were collected. KV-CBCT scans were performed using the linear accelerators from Elekta and Varian’s EDGE system. CBCT images were registered with reference CT images in the bone window mode. A total of 973 data were collected, and 3D linear errors were recorded. Results The patients with spinal bone metastasis were grouped by site, height, weight, and BMI. The P value of the patients grouped only by site was P<0.05, which was statistically significant. Conclusion When grouped by site in the 3D direction, the positioning effect of cervical spine is better than that of thoracic and lumbar spine. The positioning effect of the thoracic spine is better in the head and foot direction but worse in the left and right direction compared with that of the lumbar spine. Instead of extending or narrowing the margin according to the BMI of patients with spinal metastasis, the margin must be changed according to the site of spinal bone metastasis.
4.Acupuncture based on the "head qijie" theory combined with endovascular intervention for ischemic stroke: a randomized controlled trial.
Kun DAI ; Lili ZHANG ; Yu XIA ; Fuqiang SUN ; Zhe REN ; Gengchen LU ; Ruimin MA ; Bin CHENG
Chinese Acupuncture & Moxibustion 2025;45(6):723-727
OBJECTIVE:
To observe the clinical efficacy of acupuncture based on the "head qijie" theory combined with endovascular intervention in the treatment of ischemic stroke (IS).
METHODS:
Sixty-six IS patients were randomly divided into an experimental group (33 cases, 3 cases dropped out) and a control group (33 cases, 3 cases dropped out). The control group received endovascular intervention. On the basis of the treatment in the control group, the experimental group received acupuncture based on the "head qijie" theory starting from the second day after surgery, Baihui (GV20) and bilateral Fengchi (GB20), Tianzhu (BL10), etc. were selected, once a day, 6 times a week for 2 weeks. Before and after treatment, the scores of National Institutes of Health stroke scale (NIHSS), modified Barthel index (MBI) and modified Rankin scale (mRS) were observed in the two groups, the clinical efficacy and safety were evaluated.
RESULTS:
After treatment, the NIHSS and mRS scores were decreased compared with those before treatment in both groups (P<0.01), the NIHSS and mRS scores in the experimental group were lower than those in the control group (P<0.05). After treatment, the MBI scores were increased compared with those before treatment in both groups (P<0.01), the MBI score in the experimental group was higher than that in the control group (P<0.05). The total effective rate in the experimental group was 86.7% (26/30), which was higher than 66.7% (20/30) in the control group (P<0.05). The incidence of adverse events in the experimental group was 6.7% (2/30), which was lower than 13.3% (4/30) in the control group (P<0.05).
CONCLUSION
Acupuncture based on the "head qijie" theory combined with endovascular intervention in treating IS has good efficacy, improves neurological function, and enhances daily living ability.
Humans
;
Male
;
Female
;
Acupuncture Therapy
;
Middle Aged
;
Aged
;
Ischemic Stroke/therapy*
;
Acupuncture Points
;
Endovascular Procedures
;
Treatment Outcome
;
Adult
;
Combined Modality Therapy
5.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
6.Cell components of tumor microenvironment in lung adenocarcinoma: Promising targets for small-molecule compounds.
Mingyu HAN ; Feng WAN ; Bin XIAO ; Junrong DU ; Cheng PENG ; Fu PENG
Chinese Medical Journal 2025;138(8):905-915
Lung cancer is one of the most lethal tumors in the world with a 5-year overall survival rate of less than 20%, mainly including lung adenocarcinoma (LUAD). Tumor microenvironment (TME) has become a new research focus in the treatment of lung cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. The various cellular components exert a different role in apoptosis, metastasis, or proliferation of lung cancer cells through different pathways, thus contributing to the treatment of adenocarcinoma and potentially facilitating novel therapeutic methods. This review summarizes the research progress on different cellular components with cell-cell interactions in the TME of LUAD, along with their corresponding drug candidates, suggesting that targeting cellular components in the TME of LUAD holds great promise for future theraputic development.
Humans
;
Tumor Microenvironment/drug effects*
;
Adenocarcinoma of Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Adenocarcinoma/metabolism*
;
Animals
;
Apoptosis/physiology*
7.Identification strategy of cold and hot properties of Chinese herbal medicines based on artificial intelligence and biological experiments.
Lin LIN ; Pengcheng ZHAO ; Zhao CHEN ; Bin LIU ; Yuexi WANG ; Qi GENG ; Li LI ; Yong TAN ; Xiaojuan HE ; Li LI ; Jianyu SHI ; Cheng LU
Chinese Medical Journal 2025;138(6):745-747
8.Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.
Yue PENG ; Min YU ; Bozhao LI ; Siyu ZHANG ; Jin CHENG ; Feifan WU ; Shuailun DU ; Jinbai MIAO ; Bin HU ; Igor A OLKHOVSKY ; Suping LI
Chinese Medical Journal 2025;138(16):1927-1944
Cancer represents a major worldwide disease burden marked by escalating incidence and mortality. While therapeutic advances persist, developing safer and precisely targeted modalities remains imperative. Nanomedicines emerges as a transformative paradigm leveraging distinctive physicochemical properties to achieve tumor-specific drug delivery, controlled release, and tumor microenvironment modulation. By synergizing passive enhanced permeation and retention effect-driven accumulation and active ligand-mediated targeting, nanoplatforms enhance pharmacokinetics, promote tumor microenvironment enrichment, and improve cellular internalization while mitigating systemic toxicity. Despite revolutionizing cancer therapy through enhanced treatment efficacy and reduced adverse effects, translational challenges persist in manufacturing scalability, longterm biosafety, and cost-efficiency. This review systematically analyzes cutting-edge nanoplatforms, including polymeric, lipidic, biomimetic, albumin-based, peptide engineered, DNA origami, and inorganic nanocarriers, while evaluating their strategic advantages and technical limitations across three therapeutic domains: immunotherapy, chemotherapy, and radiotherapy. By assessing structure-function correlations and clinical translation barriers, this work establishes mechanistic and translational references to advance oncological nanomedicine development.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Nanoparticles/chemistry*
;
Animals
;
Nanomedicine/methods*
;
Drug Delivery Systems/methods*
;
Drug Carriers/chemistry*
;
Radiotherapy/methods*
9.Research progress on biosynthesis of triterpenoids in Centella asiatica.
Pei-Na ZHOU ; Bin CHEN ; Cheng-Jie SHU ; Zhuo-Hang LI ; Peng CHEN ; Cheng-Hao FEI
China Journal of Chinese Materia Medica 2025;50(3):609-619
The triterpenoid saponins of Centella asiatica, including asiaticoside, madecassoside, asiatic acid, and madecassic acid, are pivotal bioactive compounds of the plant. These constituents exhibit a spectrum of pharmacological activities, such as antioxidant, antitumor, and antidepressant effects, promotion of wound healing, and enhancement of microcirculation. Owing to these therapeutic properties, C. asiatica is widely employed in pharmaceutical and cosmetic industries. However, the escalating global demand for its extracts has led to potential supply shortages, prompting researchers to use multiple strategies such as multi-omics, molecular biology, and synthetic biology to conduct extensive studies. These studies encompass the elucidation of the biosynthetic pathways of triterpenoid saponins in C. asiatica, metabolic regulation, the hormonal induction of secondary metabolite synthesis, and the application of biotechnological strategies for natural product production to increase the yield of secondary metabolites in C. asiatica, or to produce active components via microbial chassis, thus satisfying market demands and promoting the sustainable exploitation of wild C. asiatica resources. This article first introduced the triterpenoid saponins of C. asiatica and their biological activities, then summarized the latest research advancements in their biosynthetic pathways, metabolic regulation, and heterologous biosynthesis, and provided an outlook on future development directions, with the aim of providing reference for comprehensive resource development and biotechnological synthesis of active components from C. asiatica.
Centella/genetics*
;
Triterpenes/chemistry*
;
Biosynthetic Pathways
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts
10.Posterior medial branch block for persistent pain after percutaneous vertebral augmentation in osteoporotic vertebral fractures.
Zhe-Ren WANG ; Ren YU ; Chun-de LU ; Zhi-Yuan XU ; Bin WU ; Cheng NI
China Journal of Orthopaedics and Traumatology 2025;38(11):1145-1150
OBJECTIVE:
To evaluate the short-and medium-term efficacy of posterior medial branch block in the treatment of persistent pain after percutaneous vertebral augmentation.
METHODS:
From January 2018 to January 2023, a total of 1, 062 patients with osteoporotic vertebral compression fractures underwent percutaneous vertebral augmentation. Among them, 32 elderly patients who experienced persistent low back pain after surgery and subsequently received posterior medial branch block and cryoablation were included. Six patients died during follow-up, leaving 26 patients for final analysis (1 male, 25 females). The mean age was (82.96±5.66) years (ranged, 76 to 94 years). The mean body mass index was (23.76±3.08) kg·m-2(ranged 18.1 to 27.2 kg·m-2). The bone mineral density T-value ranged from -2.5 to -4.3 with a mean of (-3.09±0.56). The mean volume of bone cement injected was 6.00 (5.38, 7.00) ml. Fracture locations were T11 (2 cases), T12 (7 cases), L1 (10 cases), L2 (6 cases), and L3 (1 case). The mean interval from vertebral augmentation to block treatment was (7.12±2.22) months (rangd 6 to 12 months). The vertebral augmentation procedures were percutaneous kyphoplasty(PKP) in 12 cases and percutaneous vertebroplasty (PVP) in 14 cases. At the 2nd week, 3rd month, and 6th month after the block, the numerical rating scale(NRS), Oswestry disability index(ODI), patient satisfaction, and pain relief rate at the 6th month were evaluated. Relationships between pain relief rate at the 6th month after the last treatment and possible influencing factors were analyzed.
RESULTS:
Compared with X-ray films after percutaneous vertebral augmentation, the X-ray films before block showed an increase in kyphotic angle and vertebral compression rate, with statistically significant differences(P<0.05). At the 2nd week, 3rd month, and 6th month after posterior medial branch block and cryoablation, NRS and ODI scores were significantly lower than before the block(P<0.05). Among the 26 patients, 5 received additional cryoablation. At the 6th month after the last treatment, 19 patients reported excellent or good satisfaction. Univariate binary Logistic analysis showed all P>0.05, and no independent factor affecting final satisfaction or pain relief at 6 months after the last treatment was identified.
CONCLUSION
Posterior medial branch block(with cryoablation) can effectively improve short-and medium-term symptoms and function in patients with persistent axial low back pain after percutaneous vertebral augmentation for osteoporotic vertebral fractures.
Humans
;
Male
;
Female
;
Aged
;
Spinal Fractures/surgery*
;
Aged, 80 and over
;
Osteoporotic Fractures/surgery*
;
Vertebroplasty/adverse effects*
;
Nerve Block/methods*


Result Analysis
Print
Save
E-mail