1.Effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on myocardial circPAN3, FOXO3, BNIP3 levels and myocardial fibrosis in rats with chronic heart failure.
Lan LI ; Bing GAO ; Jing HU ; Pan LIU ; Liya LI ; Ruihua LI ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1600-1608
OBJECTIVE:
To observe the effects of moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) on the circular RNA of exon 2-5 of the Pan3 gene (circPAN3), forkhead box O3 (FOXO3), and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in rats with chronic heart failure (CHF), and explore the potential mechanisms of moxibustion in alleviating myocardial fibrosis.
METHODS:
Ten rats of 60 male SPF-grade SD rats were randomly assigned into a normal group. The remaining rats underwent left anterior descending coronary artery (LAD) ligation to establish the CHF model. Forty successfully modeled rats were randomly divided into a model group, a moxibustion group, a rapamycin (RAPA) group, and a moxibustion+RAPA group, with 10 rats in each group. The moxibustion group received mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15), 30 min per session. The RAPA group received intraperitoneal injection of the autophagy activator RAPA (1 mg/kg). The moxibustion+RAPA group first received RAPA injection, followed by mild moxibustion at bilateral "Feishu" (BL13) and "Xinshu" (BL15). All interventions were administered once daily for 4 consecutive weeks. After the intervention, cardiac ultrasound was used to measure ejection fraction (EF) and left ventricular fractional shortening (FS). Serum placental growth factor (PLGF) level was determined by ELISA. Myocardial tissue morphology and collagen volume were assessed using hematoxylin-eosin (HE) staining and Masson's trichrome staining. The expression levels of circPAN3, FOXO3, and BNIP3 mRNA in myocardial tissue were detected by real-time PCR, while FOXO3 and BNIP3 protein expression levels were analyzed by Western blot.
RESULTS:
Compared with the normal group, the model group exhibited myocardial cell disorder, severe fibrosis, and increased collagen volume (P<0.01), along with significantly decreased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and the serum PLGF level, as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue were increased (P<0.01). Compared with the model group, the moxibustion group showed reduced myocardial fibrosis, decreased collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01). Compared with the model group, the RAPA group showed further deterioration in these parameters (P<0.01). Compared with the RAPA group, the moxibustion+RAPA group exhibited alleviation of myocardial fibrosis, reduced collagen volume (P<0.01), increased EF, FS, and circPAN3 mRNA expression in myocardial tissue (P<0.01), and decreased serum PLGF level as well as FOXO3 and BNIP3 mRNA and protein expression in myocardial tissue (P<0.01).
CONCLUSION
Moxibustion could alleviate myocardial fibrosis in CHF rats, possibly through upregulation of myocardial circPAN3 expression, downregulation of FOXO3 and BNIP3 expression, and inhibition of excessive myocardial autophagy.
Animals
;
Moxibustion
;
Heart Failure/metabolism*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Myocardium/pathology*
;
RNA, Circular/metabolism*
;
Membrane Proteins/metabolism*
;
Forkhead Box Protein O3/metabolism*
;
Acupuncture Points
;
Humans
;
Fibrosis/genetics*
;
Chronic Disease/therapy*
;
Mitochondrial Proteins
2.Genomic characteristics and phylogenetic analyses of enteroaggregative Escherichia coli infection in diarrhea outpatients in Pudong New Area, Shanghai
Qiqi CUI ; Yuchen LU ; Suping WU ; Yinwen ZHANG ; Bing ZHAO ; Lifeng PAN ; Yingjie ZHENG ; Lipeng HAO
Shanghai Journal of Preventive Medicine 2025;37(4):342-349
ObjectiveTo investigate the whole genomic characteristics and phylogenetic relationships of clinical isolates of enteroaggregative Escherichia coli (EAEC) in diarrhea outpatients in Pudong New Area, Shanghai. MethodsBased on the diarrheal disease surveillance network in Pudong New Area, Shanghai, whole-genome sequencing was performed on a total of 55 EAEC strains isolated from fecal samples of the diarrhea outpatients from January 2015 to December 2019. The genome analyses based on raw sequencing data encompassed genome size, coding genes, dispersed repeat sequences, genomic islands, and protein coding regions, and pan-genome analyses were conducted simultaneously. Contigs sequences assays were performed to analyze molecular characteristics including serotypes, antibiotic resistance genes, and virulence factors. The phylogenetic clusters and multilocus sequence typing (MLST) were identified, and a phylogenetic tree was constructed. ResultsEAEC exhibited an open pan-genome. The predominant serotype of EAEC in diarrhea outpatients in Pudong New Area was O130:H27, and the carriage rate of β-lactam resistance genes was the highest (67.27%, 37/55). A total of 29 virulence factors and 106 virulence genes were identified, phylogenic group B1 was the predominant group, and clonal group CC31 was the dominant clonal group. The strain distribution was highly heterogeneous. ConclusionThe genomic characteristics of EAEC displayed significant strain polymorphism. It is necessary to develop effective strategies for differential diagnosis and improve detection capabilities for infection with EAEC of different serotypes and genotypes.
3.Xiaoyao Shukun Decoction Treats Sequelae of Pelvic Inflammatory Disease by Regulating Neutrophil Extracellular Traps via PI3K/Akt/mTOR Pathway
Jing PAN ; Bing ZHANG ; Chunxiao DANG ; Jinxiao LI ; Pengfei LIU ; Xiao YU ; Yuchao WANG ; Jinxing LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):69-78
ObjectiveTo investigate how Xiaoyao Shukun decoction (XYSKD) regulates the formation and release of neutrophil extracellular traps (NETs) via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, thereby reducing inflammation, inhibiting the excessive proliferation of fibroblasts in pelvic adhesion tissue, decreasing adhesion and fibrosis, and repairing the tissue damage in sequelae of pelvic inflammatory disease (SPID). MethodsA total of 84 Wistar rats were randomly allocated into seven groups: blank, model, XYSKD (8 mg·kg-1), mTOR agonist (10 mg·kg-1), mTOR agonist + XYSKD (10 mg·kg-1+8 mg·kg-1), mTOR inhibitor (2 mg·kg-1), and mTOR inhibitor + XYSKD (2 mg·kg-1+8 mg·kg-1). The rat model of SPID was constructed by starvation, fatigue, and ascending Escherichia coli infection. After 14 days of drug intervention, the ultrastructure of fibroblasts in the pelvic adhesion tissue was observed by transmission electron microscopy. The general morphology of the uterus, fallopian tube, and ovary was observed by laparotomy. The levels of interleukin-1β (IL-1β), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) in the peritoneal flushing fluid were determined by enzyme-linked immunosorbent assay (ELISA). The expression of myeloperoxidase (MPO) and citrullinated histone 3 (H3) in the fallopian tube was detected by immunofluorescence. Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR) were employed to determine the relative protein and mRNA levels, respectively, of neutrophil elastase (NE), intercellular adhesion molecule-1 (CD54), α-smooth muscle actin (α-SMA), H3, PI3K, and Akt. ResultsCompared with the blank group, the model group presented a large number of collagen fibers in bundles, numerous cytoplasmic folds of fibroblasts, reduced or absent mitochondrial cristae, and disordered and expanded endoplasmic reticulum. By laparotomy, extensive pelvic congestion, connective tissue hyperplasia, thickening and hardening of the tubal end near the uterus, and tubal and ovarian adhesion or cyst were observed in the model group. In addition, the model group showed raised levels of IL-1β, IL-17, and TNF-α in the peritoneal flushing fluid (P<0.01), increased average fluorescence intensities of MPO and H3 (P<0.01), and up-regulated protein and mRNA levels of NE, H3, CD54, PI3K, and Akt (P<0.01). Compared with the model group, the mTOR agonist group showed increased fibroblasts and cytoplasmic folds, absence of mitochondrial cristae, endoplasmic reticulum dilation, and evident collagen fiber hyperplasia. Pelvic adhesions were observed to cause aggravated damage to the uterine, fallopian tube, and ovarian tissues. The levels of IL-1β, IL-17, and TNF-α in the peritoneal lavage fluid elevated (P<0.01) and the average fluorescence intensities of MPO and H3 enhanced (P<0.01) in the mTOR agonist group. In contrast, the XYSKD group and the mTOR inhibitor group showcased decreased fibroblasts and collagen fibers, alleviated mitochondrial crista loss and endoplasmic reticulum dilation, improved morphology and appearance of the uterine, fallopian tube, and ovarian tissues, lowered levels of IL-1β, IL-17, and TNF-α in the peritoneal lavage fluid (P<0.01), decreased average fluorescence intensities of MPO and H3 (P<0.01), and down-regulated protein and mRNA levels of NE, H3, CD54, PI3K, and Akt (P<0.05). Compared with the mTOR agonist group, the mTOR agonist + XYSKD group showed alleviated pathological changes in the pelvic tissue, declined levels of IL-1β, IL-17, and TNF-α (P<0.01), decreased average fluorescence intensities of MPO and H3 (P<0.01), and down-regulated protein levels of NE, H3, CD54, α-SMA, p-PI3K/PI3K, and p-Akt/Akt (P<0.01) and mRNA levels of NE, H3, CD54, α-SMA, PI3K, and Akt (P<0.01). Compared with the mTOR inhibitor group, the mTOR inhibitor + XYSKD group demonstrated reduced pathological severity of the pelvic tissue, reduced levels of IL-1β, IL-17, and TNF-α (P<0.01), decreased average fluorescence intensities of MPO and H3 (P<0.01), and down-regulated protein and mRNA levels of NE and CD54 (P<0.05). ConclusionXYSKD can inhibit the excessive formation and release of NETs via PI3K/Akt/mTOR to ameliorate the inflammatory environment and reduce fibrosis and adhesion of the pelvic tissue, thereby playing a role in the treatment of SPID. It may exert the effects by lowering the levels of IL-1β, IL-17, and TNF-α and down-regulating the expression of NE, H3, CD54, α-SMA, PI3K, and Akt in the pelvic adhesion tissue.
4.Effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 and ferroptosis suppressor protein 1 in chronic heart failure rats.
Bing GAO ; Pan LIU ; Lan LI ; Tiantian GONG ; Ling ZHU ; Liya LI ; Ran XIA ; Jing WANG
Chinese Acupuncture & Moxibustion 2025;45(6):781-790
OBJECTIVE:
To observe the effects of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on myocardial transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), atrial natriuretic peptide (ANP), and typeⅠcollagen myocardial collagen fibers (CollagenⅠ) in rats with chronic heart failure (CHF), and to explore the mechanism of moxibustion for ameliorating myocardial fibrosis and improving cardiac function in CHF.
METHODS:
Fifty SD rats were randomly divided into a normal group (n=10) and a modeling group (n=40). The CHF model was established in the modeling group by ligating the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into a model group (n=9), a moxibustion group (n=8), a rapamycin (RAPA) group (n=9), and a moxibustion+RAPA group (n=9). In the moxibustion group, moxibustion was delivered at bilateral "Feishu"(BL13) and "Xinshu" (BL15), 15 min at each point in each intervention, once daily, for 4 consecutive weeks. In the RAPA group, RAPA solution was administered intraperitoneally at a dose of 1 mg/kg, once daily for 4 consecutive weeks. In the moxibustion+RAPA group, RAPA solution was administered intraperitoneally after moxibustion. Ejection fraction (EF) and left ventricular fractional shortening (FS) were measured after modeling and intervention. After intervention, morphology of cardiac muscle was observed using HE staining and Masson's trichrome staining. Total iron content in myocardial tissue was detected using a colorimetric method. Western blot and qPCR were adopted to detect the protein and mRNA expression of TfR1, FSP1, ANP, and CollagenⅠ in myocardial tissue.
RESULTS:
Compared with the normal group, the EF and FS values decreased (P<0.01); necrosis, edema, degeneration, and arrangement disorder were presented in cardiomyocytes; inflammatory cells were obviously infiltrated, the structure of myocardial fibers was disarranged, the collagen fibers were obviously deposited and fibrosis increased (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue were elevated (P<0.01), while the protein and mRNA expression of FSP1 were reduced (P<0.01) in the model group. Compared with the model group, the moxibustion group showed that EF and FS increased (P<0.01); myocardial cell morphology was improved, and myocardial fibrosis was alleviated (P<0.01); the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while the protein and mRNA expression of FSP1 increased (P<0.01, P<0.05). Compared with the model group, the myocardial fibrosis was increased (P<0.05); the total iron content and the protein and mRNA expression of TfR1, ANP, CollagenⅠ in myocardial tissue were increased (P<0.01), while protein and mRNA expression of FSP1 decreased (P<0.01) in the RAPA group. When compared with the RAPA group and the moxibustion + RAPA group, EF and FS were elevated (P<0.01, P<0.05); myocardial cells were improved in morphology, the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue decreased (P<0.01), while protein and mRNA expression of FSP1 increased (P<0.01) in the moxibustion group. In comparison with the moxibustion + RAPA group, the RAPA group showed the decrease in EF and FS (P<0.01), the worsened myocardial fibrosis (P<0.01), the increase in the total iron content and the protein and mRNA expression of TfR1, ANP, and CollagenⅠ in myocardial tissue (P<0.01), and the decrease in the protein and mRNA expression of FSP1 (P<0.01).
CONCLUSION
Moxibustion at "Feishu" (BL13) and "Xinshu" (BL15) can slow down the process of myocardial fibrosis and improve cardiac function in CHF rats. The mechanism of moxibustion may be related to inhibiting ferroptosis through regulating autophagy.
Animals
;
Rats
;
Heart Failure/physiopathology*
;
Moxibustion
;
Rats, Sprague-Dawley
;
Male
;
Receptors, Transferrin/genetics*
;
Myocardium/metabolism*
;
Acupuncture Points
;
Humans
;
Chronic Disease/therapy*
;
Antigens, CD/metabolism*
5.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
6.Erratum: Author correction to "Generation of αGal-enhanced bifunctional tumor vaccine" Acta Pharm Sin B 12 (2022) 3177-3186.
Jian HE ; Yu HUO ; Zhikun ZHANG ; Yiqun LUO ; Xiuli LIU ; Qiaoying CHEN ; Pan WU ; Wei SHI ; Tao WU ; Chao TANG ; Huixue WANG ; Lan LI ; Xiyu LIU ; Yong HUANG ; Yongxiang ZHAO ; Lu GAN ; Bing WANG ; Liping ZHONG
Acta Pharmaceutica Sinica B 2025;15(2):1207-1207
[This corrects the article DOI: 10.1016/j.apsb.2022.03.002.].
7.Expert consensus on orthodontic treatment of protrusive facial deformities.
Jie PAN ; Yun LU ; Anqi LIU ; Xuedong WANG ; Yu WANG ; Shiqiang GONG ; Bing FANG ; Hong HE ; Yuxing BAI ; Lin WANG ; Zuolin JIN ; Weiran LI ; Lili CHEN ; Min HU ; Jinlin SONG ; Yang CAO ; Jun WANG ; Jin FANG ; Jiejun SHI ; Yuxia HOU ; Xudong WANG ; Jing MAO ; Chenchen ZHOU ; Yan LIU ; Yuehua LIU
International Journal of Oral Science 2025;17(1):5-5
Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.
Humans
;
Orthodontics, Corrective/methods*
;
Consensus
;
Malocclusion/therapy*
;
Patient Care Planning
;
Cephalometry
8.Expert consensus on orthodontic treatment of patients with periodontal disease.
Wenjie ZHONG ; Chenchen ZHOU ; Yuanyuan YIN ; Ge FENG ; Zhihe ZHAO ; Yaping PAN ; Yuxing BAI ; Zuolin JIN ; Yan XU ; Bing FANG ; Yi LIU ; Hong HE ; Faming CHEN ; Weiran LI ; Shaohua GE ; Ang LI ; Yi DING ; Lili CHEN ; Fuhua YAN ; Jinlin SONG
International Journal of Oral Science 2025;17(1):27-27
Patients with periodontal disease often require combined periodontal-orthodontic interventions to restore periodontal health, function, and aesthetics, ensuring both patient satisfaction and long-term stability. Managing these patients involving orthodontic tooth movement can be particularly challenging due to compromised periodontal soft and hard tissues, especially in severe cases. Therefore, close collaboration between orthodontists and periodontists for comprehensive diagnosis and sequential treatment, along with diligent patient compliance throughout the entire process, is crucial for achieving favorable treatment outcomes. Moreover, long-term orthodontic retention and periodontal follow-up are essential to sustain treatment success. This expert consensus, informed by the latest clinical research and practical experience, addresses clinical considerations for orthodontic treatment of periodontal patients, delineating indications, objectives, procedures, and principles with the aim of providing clear and practical guidance for clinical practitioners.
Humans
;
Consensus
;
Orthodontics, Corrective/standards*
;
Periodontal Diseases/complications*
;
Tooth Movement Techniques/methods*
;
Practice Guidelines as Topic
9.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
10.ARID1A IDR targets EWS-FLI1 condensates and finetunes chromatin remodeling.
Jingdong XUE ; Siang LV ; Ming YU ; Yixuan PAN ; Ningzhe LI ; Xiang XU ; Qi ZHANG ; Mengyuan PENG ; Fang LIU ; Xuxu SUN ; Yimin LAO ; Yanhua YAO ; Juan SONG ; Jun WU ; Bing LI
Protein & Cell 2025;16(1):64-71

Result Analysis
Print
Save
E-mail