1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Screening of biomarkers for fibromyalgia syndrome and analysis of immune infiltration
Yani LIU ; Jinghuan YANG ; Huihui LU ; Yufang YI ; Zhixiang LI ; Yangfu OU ; Jingli WU ; Bing WEI
Chinese Journal of Tissue Engineering Research 2025;29(5):1091-1100
BACKGROUND:Fibromyalgia syndrome,as a common rheumatic disease,is related to central sensitization and immune abnormalities.However,the specific mechanism has not been elucidated,and there is a lack of specific diagnostic markers.Exploring the possible pathogenesis of this disease has important clinical significance. OBJECTIVE:To screen the potential diagnostic marker genes of fibromyalgia syndrome and analyze the possible immune infiltration characteristics based on bioinformatics methods,such as weighted gene co-expression network analysis(WGCNA),and machine learning. METHODS:Gene expression profiles in peripheral serum of fibromyalgia syndrome patients and healthy controls were obtained from the gene expression omnibus(GEO)database.The differentially co-expressed genes were screened in the expression profile by differential analysis and WGCNA analysis.Least absolute shrinkage and selection operator(LASSO)and support vector machine-recursive feature elimination(SVM-RFE)machine learning algorithm were further used to identify hub biomarkers,and draw receiver operating characteristic curve(ROC)to evaluate the accuracy of diagnosing fibromyalgia syndrome.Finally,single sample gene set enrichment analysis(ssGSEA)and gene set enrichment analysis(GSEA)were used to evaluate the immune cell infiltration and pathway enrichment in patients with fibromyalgia syndrome. RESULTS AND CONCLUSION:Eight down-regulated differentially expressed genes(DEGs)were obtained after differential analysis of the GSE67311 dataset according to the conditions of log2|(FC)|>0 and P<0.05.After WGCNA analysis,497 genes were included in the module(MEdarkviolet)with the highest positive correlation(r=0.22,P=0.04),and 19 genes were included in the module(MEsalmon2)with the highest negative correlation(r=-0.41,P=6×10-5).After intersecting DEGs and the module genes of WGCNA,seven genes were obtained.Four genes were screened out by LASSO regression algorithm and five genes were screened out by SVM-RFE machine learning algorithm.After the intersection of the two,three core genes were identified,which were germinal center associated signaling and motility like,integrin beta-8,and carboxypeptidase A3.The areas under the ROC curve of the three core genes were 0.744,0.739,and 0.734,respectively,indicating that they have good diagnostic value and can be used as biomarkers for fibromyalgia syndrome.The results of immune infiltration analysis showed that memory B cells,CD56 bright NK cells,and mast cells were significantly down-regulated in patients with fibromyalgia syndrome compared with the control group(P<0.05),and were significantly positively correlated with the above three biomarkers(P<0.05).The enrichment analysis suggested that there were nine fibromyalgia syndrome enrichment pathways,mainly related to olfactory transduction pathway,neuroactive ligand-receptor interaction,and infection pathway.The above results showed that the occurrence and development of fibromyalgia syndrome are related to the involvement of multiple genes,abnormal immune regulation,and multiple pathways imbalance.However,the interactions between these genes and immune cells,as well as their relationships with various pathways need to be further investigated.
4.Genomic characteristics and phylogenetic analyses of enteroaggregative Escherichia coli infection in diarrhea outpatients in Pudong New Area, Shanghai
Qiqi CUI ; Yuchen LU ; Suping WU ; Yinwen ZHANG ; Bing ZHAO ; Lifeng PAN ; Yingjie ZHENG ; Lipeng HAO
Shanghai Journal of Preventive Medicine 2025;37(4):342-349
ObjectiveTo investigate the whole genomic characteristics and phylogenetic relationships of clinical isolates of enteroaggregative Escherichia coli (EAEC) in diarrhea outpatients in Pudong New Area, Shanghai. MethodsBased on the diarrheal disease surveillance network in Pudong New Area, Shanghai, whole-genome sequencing was performed on a total of 55 EAEC strains isolated from fecal samples of the diarrhea outpatients from January 2015 to December 2019. The genome analyses based on raw sequencing data encompassed genome size, coding genes, dispersed repeat sequences, genomic islands, and protein coding regions, and pan-genome analyses were conducted simultaneously. Contigs sequences assays were performed to analyze molecular characteristics including serotypes, antibiotic resistance genes, and virulence factors. The phylogenetic clusters and multilocus sequence typing (MLST) were identified, and a phylogenetic tree was constructed. ResultsEAEC exhibited an open pan-genome. The predominant serotype of EAEC in diarrhea outpatients in Pudong New Area was O130:H27, and the carriage rate of β-lactam resistance genes was the highest (67.27%, 37/55). A total of 29 virulence factors and 106 virulence genes were identified, phylogenic group B1 was the predominant group, and clonal group CC31 was the dominant clonal group. The strain distribution was highly heterogeneous. ConclusionThe genomic characteristics of EAEC displayed significant strain polymorphism. It is necessary to develop effective strategies for differential diagnosis and improve detection capabilities for infection with EAEC of different serotypes and genotypes.
5.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation.
6.Therapeutic Effect of Cranial Painkiller Pills' Extract Powder in Treatment of Trigeminal Neuralgia Induced by Injection of Talci Pulvis into Infraorbital Foramen of Model Rats Based on OTULIN-regulated Neuroinflammation
Shuran LI ; Xinwei WANG ; Jing SUN ; Dan XIE ; Ronghua ZHAO ; Lei BAO ; Zihan GENG ; Qiyue SUN ; Jingsheng ZHANG ; Yaxin WANG ; Xihe CUI ; Xinying LI ; Bing HAN ; Tianjiao LU ; Xiaolan CUI ; Liying LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):21-28
ObjectiveThis paper aims to verify the therapeutic effect of Cranial Painkiller pills' extract powder prepared by the new process on the rat's trigeminal neuralgia model caused by infraorbital injection of Talci Pulvis, evaluate its potential clinical application value, and compare the therapeutic effect with that of Cranial Painkiller granules, so as to provide data support for the application of the Cranial Painkiller pills' extract powder and precise treatment. MethodsThe rat's trigeminal neuralgia model was constructed by infraorbital injection of Talci Pulvis, and the rats were randomly divided into the normal group, model group, carbamazepine group (60 mg·kg-1), Cranial Painkiller granules group (2.70 g·kg-1), and low, medium, and high dosage groups of Cranial Painkiller pills' extract powder (1.35, 2.70, 5.40 g·kg-1) according to the basal mechanical pain thresholds, and there were 10 rats in each group. The drug was administered by gavage to each group 2 h after modeling, and distilled water was given by gavage to the normal and model groups under the same conditions once a day for 10 d. Von Frey brushes were used to measure mechanical pain thresholds in rats. Hematoxylin-eosin (HE) staining was used to detect pathological changes in the trigeminal ganglion, and enzyme-linked immunosorbent assay (ELISA) was used to detect the inflammatory factors interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) levels in rat serum, as well as neuropeptide substance P (SP) and β-endorphin (β-EP) levels in rat brain tissue. Western blot technique was used to detect the levels of NLRP3, ASC, Caspase-1, and OTULIN proteins in rat brain tissue. ResultsCompared with the normal group, the pain threshold of rats in the model group showed a continuous significant decrease (P<0.01). The pathological damage of brain tissue was significant (P<0.01), and the inflammatory levels of IL-1, IL-6, IL-8, and TNF-α in serum were significantly elevated (P<0.01). The level of the SP in the brain tissue was significantly elevated (P<0.01), and the level of β-EP was significantly reduced (P<0.01), while the level of OTULIN was significantly reduced, and NLRP3, ASC, and Caspase-1 protein levels were significantly elevated (P<0.01). After administration of the drug, compared with the model group, the pain threshold of each dose group of the Cranial Painkiller pills' extract powder and the Cranial Painkiller granules group significantly increased (P<0.01). The inflammatory levels of IL-1, IL-6, IL-8, and TNF-α and SP levels significantly decreased (P<0.01), and the β-EP levels were significantly elevated (P<0.01), while the levels of OTULIN protein were significantly elevated (P<0.05, P<0.01), and the levels of NLRP3, ASC proteins were decreased (P<0.01)in high dose Cranial Painkiller pills' extract powder. Meanwhile, compared with those in the model group, the trigeminal ganglion lesions of rats in the Cranial Painkiller pills' extract powder and Cranial Painkiller granules groups showed different degrees of improvement (P<0.05, P<0.01). ConclusionThe Cranial Painkiller pills' extract powder has significant therapeutic effects on the rat model of trigeminal neuralgia induced by infraorbital injection of Talci Pulvis, and its mechanism is related to the improvement of OTULIN-regulated neuroinflammation.
7.Association between incidence of hand-foot-mouth disease and meteorological factors
YANG Ya ; FEI Jie ; YANG Yiwei ; ZHANG Bing ; ZHANG Qian ; LU Yihan
Journal of Preventive Medicine 2025;37(4):346-349,355
Objective:
To examine the association between incidence of hand-foot-mouth disease (HFMD) and meteorological factors, so as to provide the basis for the prevention and control of HFMD.
Methods:
The number of HFMD cases in Jiading District, Shanghai Municipality from 2016 to 2023 were collected through the Chinese Disease Prevention and Control Information System, and meteorological data were obtained from the Shanghai Meteorological Bureau. The associations of daily average temperature, daily average relative humidity, and daily average atmospheric pressure with the daily number of HFMD cases were analyzed using a distributed lag non-linear model (DLNM).
Results:
A total of 21 555 HFMD cases were reported in Jiading District from 2016 to 2023, with an average annual incidence of 132.57/100 000. There were 12 762 male cases (59.21%) and 8 793 female cases (40.79%). The main peak of incidence occurred from June to August, and the secondary peak was from October to December. DLNM analysis showed that the incidence risk of HFMD first increased and then decreased with the increase of daily average temperature, and first decreased and then increased with the prolongation of the lag time. The cumulative lag risk was higher when the daily average temperature ranged from 18.4 to 35.1 ℃, and the maximum cumulative lag effect was observed at 27.8 ℃ (RR=5.522, 95%CI: 4.751-6.370). The incidence risk of HFMD first increased and then decreased with the increase of daily average relative humidity, and first decreased, then increased and then decreased again with the prolongation of the lag time. The cumulative lag risk was higher when the daily average relative humidity ranged from 71.7% and 90.8%, and the maximum cumulative lag effect was observed at 81.8% (RR=1.603, 95%CI: 1.321-1.995). The incidence risk of HFMD decreased with the increase of daily average atmospheric pressure, and decreased with the prolongation of the lag time when the daily average atmospheric pressure was greater than 1 015.80 hPa. When the daily average atmospheric pressure was less than 1 015.80 hPa, the incidence risk of HFMD increased with the prolongation of the lag time. The maximum cumulative lag effect was observed at 986.80 hPa (RR=8.513, 95%CI: 1.401-36.625).
Conclusion
The incidence risk of HFMD in Jiading District initially increases and then decreases with increasing temperature and relative humidity, while it decreases with increasing atmospheric pressure, and these effects exhibit a lagged response.
8.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
9.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
10.Therapeutic potential of ion channel modulation in Alzheimer's disease.
Bing HUANG ; Cheng-Min YANG ; Zhi-Cheng LU ; Li-Na TANG ; Sheng-Long MO ; Chong-Dong JIAN ; Jing-Wei SHANG
Acta Physiologica Sinica 2025;77(2):327-344
Alzheimer's disease (AD), a prototypical neurodegenerative disorder, encompasses multifaceted pathological processes. As pivotal cellular structures within the central nervous system, ion channels play critical roles in regulating neuronal excitability, synaptic transmission, and neurotransmitter release. Extensive research has revealed significant alterations in the expression and function of ion channels in AD, implicating an important role of ion channels in the pathogenesis of abnormal Aβ deposition, neuroinflammation, oxidative stress, and disruptions in calcium homeostasis and neural network functionality. This review systematically summarizes the crucial roles and underlying mechanisms of ion channels in the onset and progression of AD, highlighting how these channel abnormalities contribute to AD pathophysiology. We also discuss the therapeutic potential of ion channel modulation in AD treatment, emphasizing the importance of addressing multifactorial nature and heterogeneity of AD. The development of multi-target drugs and precision therapies is proposed as a future direction of scientific research.
Alzheimer Disease/therapy*
;
Humans
;
Ion Channels/physiology*
;
Oxidative Stress
;
Animals
;
Amyloid beta-Peptides/metabolism*
;
Synaptic Transmission
;
Calcium/metabolism*


Result Analysis
Print
Save
E-mail