1.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
2.Adhesion Mechanisms of Aquatic Fouling Organisms Mediated by Biomacromolecules
Dan HE ; Shi-Guo LI ; Ai-Bin ZHAN
Progress in Biochemistry and Biophysics 2025;52(7):1833-1852
Aquatic organisms can secrete biomacromolecules through specialized organs, tissues, or structures, enabling adhesion to underwater material surfaces and leading to severe biofouling issues. This phenomenon adversely impacts aquatic ecosystem health and human activities. Biofouling has emerged as an emerging global environmental challenge. Adhesion serves as the foundation of biofouling, representing a critical step toward a comprehensive understanding of the adhesion mechanisms of aquatic organisms. Biomacromolecules, including proteins, lipids, and carbohydrates, are the primary functional components in the adhesive substances of aquatic fouling organisms. Research indicates that these biomacromolecules exhibit diversity in types and characteristics across different aquatic organisms, yet their adhesion mechanisms show unifying features. Despite significant progress, there remains a lack of comprehensive reviews on the adhesion mechanisms mediated by biomacromolecules in aquatic fouling organisms, particularly on the roles of lipids and carbohydrates. Through a comprehensive analysis of existing literature, this review systematically summarizes the mechanistic roles of three classes of macromolecules in aquatic biofouling adhesion processes. Proteins demonstrate central functionality in interfacial adhesion and cohesion through specialized functional amino acids, conserved structural domains, and post-translational modifications. Lipids enhance structural stability via hydrophobic barrier formation and antioxidative protection mechanisms. Carbohydrates contribute to adhesion persistence through cohesive reinforcement and enzymatic resistance of adhesive matrices. Building upon these mechanisms, this review proposes four prospective research directions: optimization of protein-mediated adhesion functionality, elucidation of lipid participation in adhesion dynamics, systematic characterization of carbohydrate adhesion modalities, and investigation of macromolecular synergy in composite adhesive systems. The synthesized knowledge provides critical insights into underwater adhesion mechanisms of aquatic fouling organisms and establishes a theoretical foundation for developing mechanism-driven antifouling strategies. This work advances fundamental understanding of bioadhesion phenomena while offering practical guidance for next-generation antifouling technology development.
3.The Influence of Social Context on Perceptual Decision Making and Its Computational Neural Mechanisms
Yu-Pei LIU ; Yu-Shu WANG ; Bin ZHAN ; Rui WANG ; Yi JIANG
Progress in Biochemistry and Biophysics 2025;52(10):2568-2584
Perceptual decision making refers to the process by which individuals make choices and judgments based on sensory information, serving as a fundamental ability for human adaptation to complex environments. While traditional research has focused on perceptual decision making in isolated contexts, growing evidence highlights the profound influence of social contexts prevalent in real-world scenarios. As a crucial factor supporting individual survival and development, social context not only provides rich information sources but also shapes perceptual decision making through top-down processing mechanisms, prompting researchers to recognize the inherently social nature of human decisions. Empirical studies have demonstrated that social information, such as others’ choices or group norms, can systematically bias individuals’ perceptual decisions, often manifesting as conformity behaviors. Social influence can also facilitate performance under certain conditions, particularly when individuals can accurately identify and adopt high-quality social information. The impact of social context on perceptual decisions is modulated by a variety of external and internal factors, including group characteristics(e.g., group size, response consistency), attributes of peers (e.g., familiarity, social status, distinctions between human and artificial agents), as well as individual differences such as confidence, personality traits, and developmental stage. The motivations driving social influence encompass three primary mechanisms: improving decision accuracy through informational influence, gaining social acceptance through normative influence, and maintaining positive self-concept. Recent computational approaches have employed diverse theoretical frameworks to provide valuable insights into the cognitive mechanisms underlying social influence in perceptual decision making. Reinforcement learning models demonstrate how social feedback shapes future choices through reward-based updating. Bayesian inference frameworks describe how individuals integrate personal beliefs with social information based on their respective reliabilities, dynamically updating beliefs to optimize decisions under uncertainty. Drift diffusion models offer powerful tools to decompose social influence into distinct cognitive components, allowing researchers to differentiate between changes in perceptual processing and shifts in decision criteria. Collectively, these models establish a comprehensive methodological foundation for disentangling the multiple pathways by which social context shapes perceptual decisions. Neuroimaging and electrophysiological studies provide converging evidence that social context influences perceptual decision making through multi-level neural mechanisms. At early perceptual processing stages, social influence modulates sensory evidence accumulation in parietal cortex and directly alters primary visual cortex activity, while guiding selective attention to stimulus features consistent with social norms through attentional alignment mechanisms. At higher cognitive levels, the reward system (ventral striatum, ventromedial prefrontal cortex) is activated during group-consistent decisions; emotion-processing networks (anterior cingulate cortex, insula, amygdala) regulate experiences of social acceptance and rejection; and mentalizing-related brain regions (dorsomedial prefrontal cortex, temporoparietal junction) support inference of others’ mental states and social information integration. These neural circuits work synergistically to achieve top-down multi-level modulation of perceptual decision making. Understanding the mechanisms by which social context shapes perceptual decision making has broad theoretical and practical implications. These insights inform the optimization of collective decision-making, the design of socially adaptive human-computer interaction systems, and interventions for cognitive disorders such as autism spectrum disorder and anorexia nervosa. Future studies should combine computational modeling and neuroimaging approaches to systematically investigate the multi-level and dynamic nature of social influences on perceptual decision making.
4.Control of massive hemorrhage from the presacral venous plexus during the surgery of pelvic fracture using woven gelatin sponge balls:a case report.
Zhi-Jie XI ; Xiang-Bin LIU ; Wei-Xin LI ; Shu-Zhong HUANG ; Jie LI ; Wen SHU ; Zhan-Ying SHI
China Journal of Orthopaedics and Traumatology 2025;38(7):755-758
5.Chain mediating role of family care and emotional management between social support and anxiety in primary school students.
Zhan-Wen LI ; Jian-Hui WEI ; Ke-Bin CHEN ; Xiao-Rui RUAN ; Yu-Ting WEN ; Cheng-Lu ZHOU ; Jia-Peng TANG ; Ting-Ting WANG ; Ya-Qing TAN ; Jia-Bi QIN
Chinese Journal of Contemporary Pediatrics 2025;27(10):1176-1184
OBJECTIVES:
To investigate the chain mediating role of family care and emotional management in the relationship between social support and anxiety among rural primary school students.
METHODS:
A questionnaire survey was conducted among students in grades 4 to 6 from four counties in Hunan Province. Data were collected using the Social Support Rating Scale, Family Care Index Scale, Emotional Intelligence Scale, and Generalized Anxiety Disorder -7. Logistic regression analysis was used to explore the influencing factors of anxiety symptoms. Mediation analysis was conducted to assess the chain mediating effects of family care and emotional management between social support and anxiety.
RESULTS:
A total of 4 141 questionnaires were distributed, with 3 874 valid responses (effective response rate: 93.55%). The prevalence rate of anxiety symptoms among these students was 9.32% (95%CI: 8.40%-10.23%). Significant differences were observed in the prevalence rates of anxiety symptoms among groups with different levels of social support, family functioning, and emotional management ability (P<0.05). The total indirect effect of social support on anxiety symptoms via family care and emotional management was significant (β=-0.137, 95%CI: -0.167 to -0.109), and the direct effect of social support on anxiety symptoms remained significant (P<0.05). Family care and emotional management served as significant chain mediators in the relationship between social support and anxiety symptoms (β=-0.025,95%CI:-0.032 to -0.018), accounting for 14.5% of the total effect.
CONCLUSIONS
Social support can directly affect anxiety symptoms among rural primary school students and can also indirectly influence anxiety symptoms through the chain mediating effects of family care and emotional management. These findings provide scientific evidence for the prevention of anxiety in primary school students from multiple perspectives.
Humans
;
Female
;
Male
;
Social Support
;
Anxiety/etiology*
;
Child
;
Students/psychology*
;
Emotions
;
Logistic Models
6.Huanglian-Renshen-Decoction Maintains Islet β-Cell Identity in T2DM Mice through Regulating GLP-1 and GLP-1R in Both Islet and Intestine.
Wen-Bin WU ; Fan GAO ; Yue-Heng TANG ; Hong-Zhan WANG ; Hui DONG ; Fu-Er LU ; Fen YUAN
Chinese journal of integrative medicine 2025;31(1):39-48
OBJECTIVE:
To elucidate the effect of Huanglian-Renshen-Decoction (HRD) on ameliorating type 2 diabetes mellitus by maintaining islet β -cell identity through regulating paracrine and endocrine glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) in both islet and intestine.
METHODS:
The db/db mice were divided into the model (distilled water), low-dose HRD (LHRD, 3 g/kg), high-dose HRD (HHRD, 6 g/kg), and liraglutide (400 µ g/kg) groups using a random number table, 8 mice in each group. The db/m mice were used as the control group (n=8, distilled water). The entire treatment of mice lasted for 6 weeks. Blood insulin, glucose, and GLP-1 levels were quantified using enzyme-linked immunosorbent assay kits. The proliferation and apoptosis factors of islet cells were determined by immunohistochemistry (IHC) and immunofluorescence (IF) staining. Then, GLP-1, GLP-1R, prohormone convertase 1/3 (PC1/3), PC2, v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA), and pancreatic and duodenal homeobox 1 (PDX1) were detected by Western blot, IHC, IF, and real-time quantitative polymerase chain reaction, respectively.
RESULTS:
HRD reduced the weight and blood glucose of the db/db mice, and improved insulin sensitivity at the same time (P<0.05 or P<0.01). HRD also promoted mice to secrete more insulin and less glucagon (P<0.05 or P<0.01). Moreover, it also increased the number of islet β cell and decreased islet α cell mass (P<0.01). After HRD treatment, the levels of GLP-1, GLP-1R, PC1/3, PC2, MafA, and PDX1 in the pancreas and intestine significantly increased (P<0.05 or P<0.01).
CONCLUSION
HRD can maintain the normal function and identity of islet β cell, and the underlying mechanism is related to promoting the paracrine and endocrine activation of GLP-1 in pancreas and intestine.
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Glucagon-Like Peptide-1 Receptor/metabolism*
;
Insulin-Secreting Cells/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Blood Glucose/metabolism*
;
Insulin/blood*
;
Mice
;
Intestinal Mucosa/pathology*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Islets of Langerhans/pathology*
7.Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation.
Hang ZHAO ; Xin MA ; Hao WANG ; Xiao-Jie DING ; Le KUAI ; Jian-Kun SONG ; Zhan ZHANG ; Dan YANG ; Chun-Jie GAO ; Bin LI ; Mi ZHOU
Journal of Integrative Medicine 2025;23(3):309-319
OBJECTIVE:
To assess the safety and topical efficacy of prim-O-glucosylcimifugin (POG) and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis (AD).
METHODS:
The effects of POG on human keratinocyte cell viability and its anti-inflammatory properties were evaluated using cell counting kit-8 assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Subsequently, the impact of POG on the differentiation of cluster of differentiation (CD) 4+ T cell subsets, including T-helper type (Th) 1, Th2, Th17, and regulatory T (Treg), was examined through in vitro experiments. Network pharmacology analysis was used to elucidate POG's therapeutic mechanisms. Furthermore, the therapeutic potential of topically applied POG was further evaluated in a calcipotriol-induced mouse model of AD. The protein and transcript levels of inflammatory markers, including cytokines, lymphocyte-specific protein tyrosine kinase (Lck) mRNA, and LCK phosphorylation (p-LCK), were quantified using immunohistochemistry, RT-qPCR, and Western blot analysis.
RESULTS:
POG was able to suppress cell proliferation and downregulate the transcription of interleukin 4 (Il4) and Il13 mRNA. In vitro experiments indicated that POG significantly inhibited the differentiation of Th2 cells, whereas it exerted negligible influence on the differentiation of Th1, Th17 and Treg cells. Network pharmacology identified LCK as a key therapeutic target of POG. Moreover, the topical application of POG effectively alleviated skin lesions in the calcipotriol-induced AD mouse models without causing pathological changes in the liver, kidney or spleen tissues. POG significantly reduced the levels of Il4, Il5, Il13, and thymic stromal lymphopoietin (Tslp) mRNA in the AD mice. Concurrently, POG enhanced the expression of p-LCK protein and Lck mRNA.
CONCLUSION
Our research revealed that POG inhibits Th2 cell differentiation by promoting p-LCK protein expression and hence effectively alleviates AD-related skin inflammation. Please cite this article as: Zhao H, Ma X, Wang H, Ding XJ, Kuai L, Song JK, Zhang Z, Yang D, Gao CJ, Li B, Zhou M. Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation. J Integr Med. 2025; 23(3): 309-319.
Dermatitis, Atopic/drug therapy*
;
Animals
;
Humans
;
Cell Differentiation/drug effects*
;
Phosphorylation/drug effects*
;
Mice
;
Th2 Cells/drug effects*
;
Keratinocytes/drug effects*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Calcitriol/analogs & derivatives*
8.Buqi-Tongluo Decoction inhibits osteoclastogenesis and alleviates bone loss in ovariectomized rats by attenuating NFATc1, MAPK, NF-κB signaling.
Yongxian LI ; Jinbo YUAN ; Wei DENG ; Haishan LI ; Yuewei LIN ; Jiamin YANG ; Kai CHEN ; Heng QIU ; Ziyi WANG ; Vincent KUEK ; Dongping WANG ; Zhen ZHANG ; Bin MAI ; Yang SHAO ; Pan KANG ; Qiuli QIN ; Jinglan LI ; Huizhi GUO ; Yanhuai MA ; Danqing GUO ; Guoye MO ; Yijing FANG ; Renxiang TAN ; Chenguang ZHAN ; Teng LIU ; Guoning GU ; Kai YUAN ; Yongchao TANG ; De LIANG ; Liangliang XU ; Jiake XU ; Shuncong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):90-101
Osteoporosis is a prevalent skeletal condition characterized by reduced bone mass and strength, leading to increased fragility. Buqi-Tongluo (BQTL) decoction, a traditional Chinese medicine (TCM) prescription, has yet to be fully evaluated for its potential in treating bone diseases such as osteoporosis. To investigate the mechanism by which BQTL decoction inhibits osteoclast differentiation in vitro and validate these findings through in vivo experiments. We employed MTS assays to assess the potential proliferative or toxic effects of BQTL on bone marrow macrophages (BMMs) at various concentrations. TRAcP experiments were conducted to examine BQTL's impact on osteoclast differentiation. RT-PCR and Western blot analyses were utilized to evaluate the relative expression levels of osteoclast-specific genes and proteins under BQTL stimulation. Finally, in vivo experiments were performed using an osteoporosis model to further validate the in vitro findings. This study revealed that BQTL suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and osteoclast resorption activity in vitro in a dose-dependent manner without observable cytotoxicity. The inhibitory effects of BQTL on osteoclast formation and function were attributed to the downregulation of NFATc1 and c-fos activity, primarily through attenuation of the MAPK, NF-κB, and Calcineurin signaling pathways. BQTL's inhibitory capacity was further examined in vivo using an ovariectomized (OVX) rat model, demonstrating a strong protective effect against bone loss. BQTL may serve as an effective therapeutic TCM for the treatment of postmenopausal osteoporosis and the alleviation of bone loss induced by estrogen deficiency and related conditions.
Animals
;
NFATC Transcription Factors/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Ovariectomy
;
Osteoclasts/metabolism*
;
Female
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
NF-kappa B/genetics*
;
Osteoporosis/genetics*
;
Signal Transduction/drug effects*
;
Bone Resorption/genetics*
;
Cell Differentiation/drug effects*
;
Humans
;
RANK Ligand/metabolism*
;
Mitogen-Activated Protein Kinases/genetics*
;
Transcription Factors
9.Effects of High-Definition Transcranial Direct Current Stimulation on Excitability of Spinal Motoneurons under Ankle Dorsi-Plantarflexion Fatigue Task
Changxiao YU ; Jianglong ZHAN ; Bin SHEN ; Junhong ZHOU ; Linfeng XU ; Weijie FU
Journal of Medical Biomechanics 2024;39(2):293-298
Objective To investigate the effects of high-definition transcranial direct current stimulation(HD-tDCS)on the modulation of the H-reflex and M-wave during ankle dorsiflexion-plantar flexion fatigue tasks to provide direction for the application of HD-tDCS in mitigating neuromuscular fatigue.Methods Twenty healthy young male participants were recruited and randomly assigned to either the real stimulation or sham stimulation group,with 10 participants in each group.The intervention consisted of a 5-day single-blind HD-tDCS application(duration:20 min;intensity:2 mA;target:Cz).Baseline measurements of the H-reflex and M-wave under resting conditions,M-wave during maximal voluntary isometric contraction(MVIC)of the dorsiflexor muscle,and MVIC torque of the dorsiflexor and plantar flexor muscles were obtained.An ankle dorsiflexion fatigue task was performed to determine the time to achieve fatigue for the task.The same fatigue task was repeated and evaluated one day after the intervention.A repeated-measures two-factor(stimulation condition x pre/post fatigue)analysis of variance(ANOVA)was used to analyze the effects of independent variables on the mechanical properties of the muscles and α-motoneuron conduction characteristics.Results After fatigue,voluntary activation(VA),maximal H-reflex(Hmax),maximal M-wave(Mmax),and dorsiflexor and plantar flexor MVIC torques in both groups were significantly reduced compared with pre-fatigue levels(P<0.05).However,compared to the real stimulation group,the sham stimulation group showed a more significant decline in VA and plantar flexor MVIC torque(P<0.05).Conclusions A continuous 5-day HD-tDCS intervention can effectively increase α-motoneuron activity at the spinal segment.It can also exert an inhibitory effect on reducing information transmission capacity at the peripheral neuromuscular junction under the ankle dorsi-plantarflexion fatigue task.
10.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.

Result Analysis
Print
Save
E-mail