1.Application of motor behavior evaluation method of zebrafish model in traditional Chinese medicine research.
Xin LI ; Qin-Qin LIANG ; Bing-Yue ZHANG ; Zhong-Shang XIA ; Gang BAI ; Zheng-Cai DU ; Er-Wei HAO ; Jia-Gang DENG ; Xiao-Tao HOU
China Journal of Chinese Materia Medica 2025;50(10):2631-2639
The zebrafish model has attracted much attention due to its strong reproductive ability, short research cycle, and ease of maintenance. It has always been an important vertebrate model system, often used to carry out human disease research. Its motor behavior features have the advantages of being simpler, more intuitive, and quantifiable. In recent years, it has received widespread attention in the study of traditional Chinese medicine(TCM)for the treatment of sleep disorders, neurodegenerative diseases, fatigue, epilepsy, and other diseases. This paper reviews the characteristics of zebrafish motor behavior and its applications in the pharmacodynamic verification and mechanism research of TCM extracts, active ingredients, and TCM compounds, as well as in active ingredient screening and safety evaluation. The paper also analyzes its advantages and disadvantages, with the aim of improving the breadth and depth of zebrafish and its motor behavior applications in the field of TCM research.
Zebrafish/physiology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods*
;
Animals
;
Sleep Wake Disorders/physiopathology*
;
Epilepsy/physiopathology*
;
Neurodegenerative Diseases/physiopathology*
;
Fatigue/physiopathology*
;
Behavior, Animal/physiology*
;
Motor Activity/physiology*
2.Antidepressant effects of Ziziphi Spinosae Semen extract on depressive-like behaviors in sleep deprivation rats based on integrated serum metabolomics and gut microbiota.
Liang-Lei SONG ; Ya-Yu SUN ; Ze-Jia NIU ; Jia-Ying LIU ; Xiang-Ping PEI ; Yan YAN ; Chen-Hui DU
China Journal of Chinese Materia Medica 2025;50(16):4510-4524
Based on serum metabolomics and gut microbiota technology, this study explores the effects and mechanisms of the water extract of Ziziphi Spinosae Semen(SZRW) and the petroleum ether extract of Ziziphi Spinosae Semen(SZRO) in improving depressive-like behaviors induced by sleep deprivation. A modified multi-platform water environment method was employed to establish a rat model of sleep deprivation. Depressive-like behaviors in rats were assessed through the sucrose preference test and forced swim test. The expression of barrier proteins, such as Occludin, in the colon was determined by immunofluorescence. UPLC-Q-Orbitrap MS was utilized to analyze the serum metabolic profiles of sleep-deprived rats, screen for differential metabolites, and analyze metabolic pathways. The diversity of the gut microbiota was detected using 16S rRNA gene sequencing. Spearman correlation coefficient analysis was conducted to assess the correlation between differential metabolites and gut microbiota. The results indicated that SZRO significantly increased the sucrose preference index and decreased the immobility time in the forced swim test in rats. A total of 34 differential metabolites were identified through serum metabolomics. SZRW and SZRO shared five metabolic pathways, including phenylalanine metabolism. SZRW uniquely featured taurine and hypotaurine metabolism, while SZRO uniquely featured linoleic acid metabolism and tyrosine metabolism. Correlation analysis revealed that SZRW could upregulate the abundance of Bilophila, promoting the production of indole-3-propionic acid and subsequently upregulating the expression levels of intestinal tight junction proteins such as ZO-1, Occludin, and Claudin-1. SZRO could indirectly influence metabolic pathways such as arginine metabolism and linoleic acid metabolism by upregulating the abundance of gut microbiota such as Coprococcus and Eubacterium species. Both SZRW and SZRO can regulate endogenous metabolism, including amino acids, energy, and lipids, alter the gut microbiota microecology, and improve depressive-like behaviors. SZRO demonstrated superior effects in regulating metabolic pathways and gut microbiota structure compared to SZRW. The findings of this study provide a scientific basis for elucidating the pharmacodynamic material basis of Ziziphi Spinosae Semen.
Animals
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/blood*
;
Rats, Sprague-Dawley
;
Sleep Deprivation/complications*
;
Ziziphus/chemistry*
;
Antidepressive Agents/administration & dosage*
;
Behavior, Animal/drug effects*
;
Humans
3.Mechanism of Xiangshao Granules in alleviating anxiety and depression in mice based on integrated metabolomics and gut microbiota.
Xiao-Chuan ZHANG ; Dong-Sheng YU ; Xiao-Ping LI
China Journal of Chinese Materia Medica 2025;50(16):4525-4537
This study aims to investigate the mechanism through which Xiangshao Granules treat anxiety and depression using metabolomics and gut microbiota techniques, combined with animal experiments. Sixty female ICR mice were selected for the experiment and randomly divided into six groups: a control group, a model group, a low-dose Xiangshao Granules group, a medium-dose Xiangshao Granules group, a high-dose Xiangshao Granules group, and an estradiol(positive drug) group. Except for the control group, rats in other groups were induced for anxiety and depression model by ovariectomy(OVX) combined with chronic unpredictable mild stress(CUMS). After successful modeling, the mice received oral administration of Xiangshao Granules or estradiol for three weeks. Anxiety and depression behaviors in mice were evaluated using light-dark box tests, open field tests, and elevated plus-maze tests. The levels of substances closely related to anxiety and depression, such as serotonin(5-HT) and estrogen(E_2), were quantified in plasma and hippocampal tissue using enzyme-linked immunosorbent assay(ELISA). Metabolomics and 16S rDNA amplicon sequencing techniques were employed to analyze the regulatory effects of Xiangshao Granules on plasma metabolites and metabolic pathways in anxiety and depression mice, as well as their impact on the distribution of gut microbiota. Finally, the correlation between plasma metabolites and differential gut microbiota was constructed using the Spearman correlation coefficient method. Behavioral experimental results indicated that, compared to the control group, the model group exhibited significantly decreased dwell time in the light box, reduced total distance in the open field, and diminished dwell time in the open arm. In contrast, high dose of Xiangshao Granules were found to increase the dwell time in the light box and total distance in the open field. ELISA results indicated that the levels of 5-HT, gamma-aminobutyric acid(GABA), E_2 were significantly decreased, luteinizing hormone(LH), adrenocorticotropic hormone(ACTH), and corticosterone(CORT) were significantly elevated in the anxiety and depression mice, and treatment with middle, high dose of Xiangshao Granules reversed the levels of these substances. Additionally, in the anxiety and depression mouse model, the levels of follicle-stimulating hormone(FSH) were significantly increased, whereas middle, high dose of Xiangshao Granules decreased FSH levels. Metabolomics analysis revealed that Xiangshao Granules significantly changed the metabolic profile of the anxiety and depression mice, affecting central carbon metabolism, amino acid biosynthesis, and ABC transporter pathways. The results from 16S rDNA amplicon sequencing showed that Xiangshao Granules improved the relative abundance of genera such as Bacteroidia, Bacilli, Lactobacillales, and Lactobacillus. Spearman correlation analysis indicated a close association between specific differential gut microbiota and plasma differential metabolites. This study suggests that Xiangshao Granules significantly ameliorate anxiety and depression symptoms in mice by altering the levels of substances associated with these conditions, including 5-HT, GABA, E_2, LH, and ACTH. The metabolomics and gut microbiota data suggest that the therapeutic mechanism may be closely related to the regulation of amino acid biosynthesis, central carbon metabolism, and the alteration of key microbial community compositions.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Anxiety/microbiology*
;
Depression/microbiology*
;
Gastrointestinal Microbiome/drug effects*
;
Mice
;
Female
;
Mice, Inbred ICR
;
Metabolomics
;
Serotonin/metabolism*
;
Humans
;
Disease Models, Animal
;
Rats
;
Behavior, Animal/drug effects*
4.Modified Shuyu Pills regulate VTA-NAc circuit myelination to ameliorate depressive behaviors in mouse model of vascular dementia via LDLR/MEK/ERK signaling pathway.
Song JING ; Zi-Hu TAN ; Qiong YANG
China Journal of Chinese Materia Medica 2025;50(16):4555-4563
This study aims to explore the effects and potential mechanisms of Modified Shuyu Pills in ameliorating depressive behaviors in the mouse model of vascular dementia(VaD). Seventy-two three-month-old male C57BL/6 mice were assigned into six groups: sham, model, low-, medium-, and high-dose Modified Shuyu Pills, and fluoxetine. The other five groups except the sham group underwent bilateral common carotid artery stenosis combined with chronic unpredictable stress. Depressive behaviors were assessed by the sucrose preference test and tail suspension test. Cerebral blood flow was measured by laser speckle imaging. Protein levels of low density lipoprotein receptor(LDLR), mitogen-activated protein kinase kinase(MEK), phosphorylated(p)-MEK, extracellular signal-regulated kinase(ERK), and p-ERK in the ventral tegmental area(VTA) and nucleus accumbens(NAc) were determined by Western blot. The fluorescence intensity of myelin basic protein(MBP) in the VTA and NAc were measured by immunofluorescence. Myelin sheath morphology in the VTA and NAc was observed by luxol fast blue staining, and the ultrastructure of myelin sheath in the VTA and NAc was examined by transmission electron microscopy. In the tail suspension test, the immobility time of the model group was longer than that of the sham group(P<0.01). In the sucrose preference test, the sucrose preference rate of the model group was lower than that of the sham group(P<0.01). After intervention with Modified Shuyu Pills, the immobility time in the tail suspension test was shortened(P<0.01), and the sucrose preference rate increased(P<0.01). Laser speckle imaging results showed that compared with the sham group, the model group showed reduced cerebral blood flow(P<0.01), and the reduction was reversed by medium-and high-dose Modified Shuyu Pills(P<0.01). Western blot results indicated that the relative expression levels of LDLR, p-MEK/MEK, and p-ERK/ERK in the VTA and NAc of the model group were lower than those in the sham group(P<0.01). Medium-and high-dose Modified Shuyu Pills reversed this trend(P<0.01). Immunofluorescence results showed that the fluorescence intensity of MBP in the VTA and NAc of the model group was lower than that of the sham group(P<0.01). The medium-and high-dose Modified Shuyu Pills groups showed increased fluorescence intensity of MBP in the VTA compared with the model group(P<0.01). In the NAc, the fluorescence intensity of MBP in all the groups of Modified Shuyu Pills increased to varying degrees compared with that in the model group(P<0.01). Luxol fast blue staining results showed that the model group presented lighter staining intensity and looser arrangement of myelin fibers than the sham group, indicating significant demyelination in the model group. However, after intervention with medium-and high-dose Modified Shuyu Pills, the staining intensity and myelin sheath structure in the VTA and NAc were improved. Transmission electron microscopy results revealed that the myelin sheath in the VTA and NAc of the sham group was intact and dense, while the model group exhibited extensive myelin loss, with myelin sheath degeneration and disintegration. After intervention with Modified Shuyu Pills, the myelin sheath loss in the VTA and NAc of mice was reduced, and the proportion of myelinated tissue increased. In summary, Modified Shuyu Pills may promote myelination via the VTA-NAc circuit by upregulating the LDLR/MEK/ERK signaling pathway, thereby ameliorating depressive-like behaviors in VaD mice.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Ventral Tegmental Area/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Depression/genetics*
;
Receptors, LDL/genetics*
;
Dementia, Vascular/psychology*
;
MAP Kinase Signaling System/drug effects*
;
Nucleus Accumbens/metabolism*
;
Behavior, Animal/drug effects*
;
Humans
;
Myelin Sheath/drug effects*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
5.Mechanism of antidepressant action of kaji-ichigoside F1 based on metabolomics.
Mao-Yang HUANG ; Fa-Ju CHEN ; Lang ZHOU ; Qi-Ji LI ; Xiao-Sheng YANG
China Journal of Chinese Materia Medica 2025;50(16):4574-4583
In this study, serum metabolomics techniques and molecular biology methods were used to investigate the intervention effect of kaji-ichigoside F1 on chronic unpredictable mild stress(CUMS) depression mouse model and its mechanism. The CUMS depression mouse model was constructed, and the mice were divided into blank group, model group, escitalopram(ESC, 10 mg·kg~(-1)) group, and low-dose, medium-dose, and high-dose kaji-ichigoside F1 groups(1, 2, and 4 mg·kg~(-1)). CUMS modeling was performed on all mice except the blank group, and the cycle was four weeks. At the end of modelling, ESC and kaji-ichigoside F1 were administered by gavage once a day for 28 days. After the end of the administration, behavioral testing(sucrose preference test, open field test, forced swimming test, and tail suspension test) was conducted to evaluate the improvement of depression symptoms of different doses of kaji-ichigoside F1 on CUMS depression mouse model. The morphology of neurons and the number of Nissl bodies in the hippocampus were observed by Nissl staining. Metabolomics technique was used to analyze the changes in serum differential metabolites in mice. Protein expression levels of P2X7 purinergic receptor(P2X7R), adenosine A1 receptor(A1R), and adenosine receptor A2A(A2AR) in mouse hippocampus were detected by Western blot. The results showed that compared with that in the blank group, the body weight of mice in the model group was significantly decreased, and the sucrose preference rate was significantly decreased. The immobility time was significantly increased in the forced swimming and tail suspension tests, and the total moving distance was significantly decreased in the open field test. The number of Nissl bodies was significantly decreased, and the depression-like behavior and the number of Nissl bodies in the hippocampus of mice were significantly improved after administration of kaji-ichigoside F1. In the metabonomics analysis, the purine metabolism of serum after kaji-ichigoside F1 administration was involved in the metabolic passage of depression, and Western blot analysis verified the expression of P2X7R, A1R, and A2AR proteins in purine metabolic pathways. The results show that kaji-ichigoside F1 significantly decreases the expression of P2X7R and A2AR proteins in the hippocampus of CUMS model mice and increases the expression level of A1R proteins. It is suggested that kaji-ichigoside F1 may play an antidepressant role by regulating the expression of P2X7R, A1R, and A2AR proteins in the purine metabolism pathway.
Animals
;
Mice
;
Antidepressive Agents/administration & dosage*
;
Metabolomics
;
Depression/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Behavior, Animal/drug effects*
;
Humans
6.Jiawei Xiaoyao Pills improves depression-like behavior in rats by regulating neurotransmitters, inhibiting inflammation and oxidation and modulating intestinal flora.
Ying LIU ; Borui LI ; Yongcai LI ; Lubo CHANG ; Jiao WANG ; Lin YANG ; Yonggang YAN ; Kai QV ; Jiping LIU ; Gang ZHANG ; Xia SHEN
Journal of Southern Medical University 2025;45(2):347-358
OBJECTIVES:
To explore the bioactive components in Jiawei Xiaoyao Pills (JWXYP) and their mechanisms for alleviating depression-like behaviors.
METHODS:
The active compounds, key targets, and pathways of JWXYP were identified using TCMSP and TCMIP databases. Thirty-six SD rats were randomized equally into 6 groups including a control group and 5 chronic unpredictable mild stress (CUMS)-induced depression groups. After modeling, the 5 model groups were treated with daily gavage of normal saline, 1.8 mg/kg fluoxetine hydrochloride (positive control drug), or JWXYP at 1.44, 2.88, and 4.32 g/kg. The depression-like behaviors of the rats were evaluated using behavioral tests, and pathological changes in the liver and hippocampus were examined with HE staining. The biochemical indicators in the serum and brain tissues were detected using ELISA. Serum metabolomics analysis was performed to identify the differential metabolites using OPLS-DA, and gut microbiota changes were analyzed using 16S rDNA sequencing.
RESULTS:
Network pharmacology revealed that menthone and paeonol in JWXYP were capable of penetrating the blood-brain barrier to regulate inflammatory pathways and protect the nervous system. In the rat models subjected to CUMS, treatment with JWXYP significantly improved body weight loss, sucrose preference and open field activities, reduced liver inflammation, alleviated structural changes in the hippocampal neurons, decreased serum levels of TNF‑α, IL-1β, IL-6 and LBP, and increased 5-HT and VIP concentrations in the serum and brain tissue, and these effects were the most pronounced in the high-dose group. Metabolomics analysis showed changes in such metabolites as indole-3-acetamide and acetyl-L-carnitine in JWXYP-treated rats, involving the pathways for bile acid biosynthesis and amino acid metabolism. 16S rDNA analysis demonstrated increased gut microbiota diversity and increased abundance of Lactobacillus species in JWXYP-treated rats.
CONCLUSIONS
JWXYP alleviates depression-like symptoms in rats by regulating the neurotransmitters, inhibiting inflammation and oxidation, and modulating gut microbiota.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Neurotransmitter Agents/metabolism*
;
Rats
;
Inflammation
;
Male
;
Hippocampus
;
Behavior, Animal/drug effects*
7.Effects of larval feeding amount on development and deltamethrin resistance in Aedes albopictus.
Ying WANG ; Wengyang DENG ; Chaomei WU ; Shihuan TIAN ; Hua LI
Journal of Southern Medical University 2025;45(3):488-493
OBJECTIVES:
To investigate how larval feeding regimens influence development and deltamethrin resistance of Aedes albopictus to provide evidence for standardizing larval feeding protocols in studies of insecticide resistance.
METHODS:
Aedes albopictus larvae of a laboratory resistant strain were divided into 3 groups (n=500) and reared with high, medium, and low food availability (100, 50, or 25 mg daily for the 1st and 2nd instars, and 500 mg 250, or 125 mg daily for 3rd and 4th instars). The developmental time, pupation rate, adult emergence rate, adult body weight, and wing length were recorded in each group, and deltamethrin resistance of the mosquitoes was assessed using larval bioassays and contact tube tests for adults.
RESULTS:
Significant developmental differences were observed across the 3 feeding groups. Larval development time decreased as the food availability increased, and both high- and low-food groups showed reduced pupation rates (χ²=16.282, 7.440) and emergence rates (χ²=4.093, 6.977) compared to the medium-food group. Adult body weight and wing length were positively correlated with the amount of larval food intake (P<0.05). In high, medium and low food intake groups, larval LC50 values for deltamethrin were 0.110, 0.072 and 0.064 mg/L, adult KDT50 values were 97.404, 68.964 and 65.005 min, and adult mosquitoe mortality rates at 24 h after deltamethrin exposure were 12%, 16% and 19%, respectively.
CONCLUSIONS
The feeding amount during larval stage significantly impacts the development and deltamethrin resistance of Aedes albopictus, suggesting the importance of standardization of larval nutrition for ensuring comparability of resistance test data across laboratories.
Animals
;
Aedes/physiology*
;
Pyrethrins/pharmacology*
;
Nitriles/pharmacology*
;
Larva/physiology*
;
Insecticide Resistance
;
Insecticides/pharmacology*
;
Feeding Behavior
8.Hypericin ameliorates stress-induced depressive-like behaviors in mice by modulating the CN-NFAT calcium signaling pathway in microglia.
Zhengtao GAO ; Pingyan LIN ; Bingcan ZHOU ; Mingheng CHEN ; Erqi LIU ; Tianxiang LEI ; Huixin NI ; Haixin LIU ; Yao LIN ; Qian XU
Journal of Southern Medical University 2025;45(3):506-513
OBJECTIVES:
To investigate the role of the calcium/calmodulin (CaM)-mediated activation of calcineurin (CN)-nuclear factor of activated T cells (NFAT) signaling pathway in mediating the regulatory effect of hyperforin (HY) on stress-induced depression-like disorder (DP) in mice.
METHODS:
C57BL/6J mice were randomly divided into control group, DP model group, and hyperforin treatment group (n=15). Behavioral changes of the mice were assessed using open field test (OFT), sucrose preference test (SPT), tail suspension test (TST), light/dark box test (LDB), and novel object suppression test (NSFT). Immunohistochemistry was used to detect tyrosine hydroxylase (TH) expression in the CA1 region of the hippocampus, and serum serotonin (5-HT) and norepinephrine (NA) levels were detected with ELISA. Western blotting was used to analyze the expressions of TNF-α, IL-1β, IL-2, and CN-NFAT pathway proteins. In cultured BV-2 microglial cells with lipopolysaccharide (LPS) stimulation, the effects of hyperforin and CN inhibitor (CNIS) on expressions of ionized calcium-binding adapter molecule 1 (IBA-1), 5-HT, NA, inflammatory cytokines and CN-NFAT pathway proteins were examined using immunofluorescence assay, ELISA or Western blotting.
RESULTS:
Compared with the control mice, the mice in DP group showed significantly reduced activity in OFT, decreased sucrose consumption in SPT, reduced shuttle crossing in LDB, and lowered food intake in NSFT with significantly increased immobility in TST. The mice with DP showed significantly decreased TH-positive neurons, lowered 5-HT and NA levels, and increased expressions of TNF-α, IL-1β, IL-2 and CaM-CN-NFAT pathway proteins. In cultured BV-2 cells, LPS stimulation strongly increased cellular IBA-1 expression, decreased the levels of neurotransmitters (5-HT and NA), and increased the levels of inflammatory cytokines and CN-NFAT signaling, and these changes were effectively reversed by treatment with hyperforin or CNIS.
CONCLUSIONS
Hyperforin improves stress-induced depression-like behaviors in mice and activated BV-2 cells by targeting the CN-NFAT signaling pathway.
Animals
;
Mice, Inbred C57BL
;
Mice
;
Microglia/drug effects*
;
Depression/etiology*
;
Perylene/pharmacology*
;
Calcineurin/metabolism*
;
NFATC Transcription Factors/metabolism*
;
Calcium Signaling/drug effects*
;
Stress, Psychological
;
Phloroglucinol/pharmacology*
;
Signal Transduction
;
Male
;
Behavior, Animal/drug effects*
;
Terpenes
9.Determinants of delayed consultation in pediatric dengue: A cross-sectional study in Batangas, Philippines
Marcia Angelica L. Ricalde ; Daisy O. Sanchez-mosterio
Pediatric Infectious Disease Society of the Philippines Journal 2025;26(1):30-42
OBJECTIVE
Dengue remains a critical public health concern in the Philippines. Late consultation and delayed presentation of dengue patients to hospitals constantly challenge doctors. This study aimed to identify factors contributing to late consultation of dengue patients.
METHODOLOGYThis analytic, cross-sectional study examined patient, parental, socioeconomic, cultural, and health system factors influencing delayed consultation among parents of patients 0 – 18 years at Batangas Medical Center and Lipa Medix Medical Center. A total of 668 parents were enrolled. Descriptive statistics and frequency tables summarized the key characteristics. Test of proportions assessed differences between groups. Univariate logistic regression screened possible predictors, followed by multiple logistic regression to identify significant factors.
RESULTSUnivariate analysis identified significant predictors of late consultation, including older patient age(p=0.002), residence >50 km from the hospital (p 50 km from the hospital were 2.7 times more likely to consult late (p=0.01).
CONCLUSIONDelayed consultation was influenced by the patient age, hospital type, geographic distance from the hospital, maternal marital status, and cultural beliefs in home remedies and faith healing. Strategies to improve early consultation should consider these factors.
Human ; Dengue ; Health-seeking Behavior ; Health Behavior ; Cross-sectional Studies


Result Analysis
Print
Save
E-mail