1.Analysis of the current situation of retinopathy of prematurity in Xiamen region and its influencing factors
Shuangshuang YE ; Wenhui LI ; Baozhu XU ; Tingyu GU ; Ruirui SUN ; Hexie CAI
International Eye Science 2025;25(7):1195-1200
AIM: To investigate the current status of retinopathy of prematurity(ROP)in premature infants in Xiamen and analyze its influencing factors, aiming to provide a scientific basis for clinical treatment and preventive strategies.METHODS: A retrospective study was conducted on the case data of 363 preterm infants with a gestational age of <32 wk who underwent fundus examination at Xiang'an Hospital of Xiamen University from February 11, 2020 to February 25, 2023. The incidence of ROP was statistically analyzed based on the screening results. All premature infants were divided into ROP group(37 cases, 64 eyes)and non-ROP group(326 cases, 652 eyes). General clinical data and perinatal-related information of the two groups were compared, and multivariate Logistic regression analysis was used to identify factors influencing the occurrence of ROP in premature infants.RESULTS: A total of 363 premature infants were included in this study. The fundus screening results showed that a total of 37 cases(64 eyes)of premature infants were detected with ROP, including 10 cases(10 eyes)monocular and 27 cases(54 eyes)binocular, with an overall incidence of 10.2%(37/363). The severity was determined according to the ROP international classification standard(ROP is divided into 5 stages, with stage I being the least severe and stage V the most severe). Among the 64 eyes, 30 eyes(46.9%)were in stage I, 20 eyes(31.3%)were in stage II, 10 eyes(15.6%)were in stage III, 4 eyes(6.3%)were in stage IV, and there were no cases in stage V. By comparing the clinical data of the two groups, no significant differences were found in gender, mode of delivery, singleton or multiple births, premature rupture of membranes, history of asphyxia, patent ductus arteriosus(PDA), or neonatal respiratory distress syndrome(NRDS)between the two groups(all P>0.05). However, premature infants in the ROP group had significantly younger gestational age and lower birth weight compared to those in the non-ROP group(all P<0.05). Additionally, the ROP group had higher proportions of longer hospital stays, bronchopulmonary dysplasia(BPD), neonatal sepsis, anemia, oxygen therapy for more than 1 wk, oxygen concentration above 40%, and blood transfusion treatment(all P<0.05). Multivariate Logistic regression analysis revealed that combined neonatal sepsis(OR=166.985, 95% CI: 35.239-791.277, P<0.001), anemia(OR=8.111, 95% CI: 2.064-31.871, P=0.003), oxygen use time >1 wk(OR=10.216, 95% CI: 2.543-41.039, P=0.001), oxygen therapy concentration >40%(OR=7.647, 95% CI: 1.913-30.566, P=0.004), and receiving blood transfusion therapy(OR=5.879, 95% CI: 1.412-24.470, P=0.015)were the main risk factors affecting the occurrence of ROP in preterm infants, and the higher birth weight of preterm infants was a protective factor for ROP(OR=0.093, 95% CI: 0.022-0.394, P=0.001).CONCLUSION: The incidence of ROP in premature infants is relatively high, and there are multiple influencing factors. Low birth weight, neonatal sepsis, anemia, oxygen therapy, and blood transfusion treatment are high-risk factors for ROP in premature infants. Clinical attention should be given to such infants, and fundus screening should be conducted in a standardized manner to provide early treatment, thereby further reducing the risk of ROP in premature infants.
2.Different calcium ion concentrations affect epithelial mesenchymal transformation of human peritoneal mesothelial cells via endoplasmic reticulum stress
Baozhu GUO ; Jinxiu CHENG ; Xin JIN ; Yutao HE ; Xianmin SUN
Chinese Critical Care Medicine 2024;36(1):50-55
Objective:To study the effects of different calcium ion concentrations on epithelial mesenchymal transformation (EMT) of human peritoneal mesothelial cell (HPMC) via endoplasmic reticulum stress (ERS).Methods:HPMC cell line HMrSV5 was cultured in vitro and treated in groups. The cells in the control group, high calcium group 1, and high calcium group 2 were treated with medium containing calcium ion concentrations of 1.25, 1.75, and 2.25 mmol/L, respectively. The solvent control group was treated with medium containing 1.25 mmol/L physiological calcium ion concentration and 0.1% dimethyl sulfoxide (DMSO), the high calcium+solvent group was treated with medium containing 2.25 mmol/L calcium ion concentration and 0.1% DMSO, the high calcium+4-phenylbutyric acid (4-PBA) group was treated with medium containing 2.25 mmol/L calcium ion concentration and 1 mmol/L ERS inhibitor 4-PBA, and each group was treated for 48 hours. Morphological changes of cells in each group were observed under light microscope. The expressions of epithelial cell phenotype marker zonula occluden-1 (ZO-1) and mesenchymal cell phenotype marker α-smooth muscle actin (α-SMA) in the cells were observed by immunofluorescence staining. The expressions of EMT marker genes E-cadherin, ZO-1, α-SMA and Vimentin were detected by fluorescence quantitative polymerase chain reaction (PCR). The expressions of ERS marker proteins phosphorylated protein kinase R-like endoplasmic reticulum kinase (p-PERK), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), transcription activating factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by Western blotting. Results:Compared with the control group, the morphology of HMrSV5 cells became slender and fibrotic, the fluorescence intensity of ZO-1 increased, and the fluorescence intensity of α-SMA decreased in high calcium 1 and high calcium 2 groups, indicating that the cells transformed from epithelial cells to mesenchyme cells. The mRNA expressions of E-cadherin and ZO-1 were significantly decreased, while the mRNA expressions of α-SMA and Vimentin and the protein expressions of p-PERK, p-eIF2α, ATF4 and CHOP were significantly increased, moreover, the expressions of the above marker genes or proteins in the high calcium 2 group was more obvious than those in the high calcium 1 group [E-cadherin mRNA (2 -ΔΔCt): 0.53±0.05 vs. 0.75±0.09, ZO-1 mRNA (2 -ΔΔCt): 0.42±0.06 vs. 0.69±0.06, α-SMA mRNA (2 -ΔΔCt): 1.81±0.16 vs. 1.32±0.14, Vimentin mRNA (2 -ΔΔCt): 2.05±0.22 vs. 1.48±0.16, p-PERK protein (p-PERK/β-actin): 0.81±0.09 vs. 0.59±0.06, p-eIF2α protein (p-eIF2α/β-actin): 0.87±0.10 vs. 0.50±0.06, ATF4 protein (ATF4/β-actin): 0.93±0.10 vs. 0.72±0.06, CHOP protein (CHOP/β-actin): 0.79±0.09 vs. 0.46±0.04, all P < 0.05]. Compared with the solvent control group, the morphological changes of cells, the expressions of EMT marker genes and ERS marker proteins after high calcium ion concentration of 2.25 mmol/L were consistent with those in the high calcium 2 group than control group. Compared with the high calcium+solvent group, the cell morphology recovered the characteristics of polygonal and pebble-like epithelial cells in the high calcium+4-PBA group, the fluorescence intensity of ZO-1 increased, the fluorescence intensity of α-SMA decreased, and the mRNA expressions of E-cadherin and ZO-1 in the cells were significantly increased [E-cadherin mRNA (2 -ΔΔCt): 0.86±0.09 vs. 0.57±0.04, ZO-1 mRNA (2 -ΔΔCt): 0.81±0.06 vs. 0.48±0.05, both P < 0.05], the mRNA expressions of α-SMA and Vimentin and the protein expressions of p-PERK, p-eIF2α, ATF4 and CHOP were significantly decreased [α-SMA mRNA (2 -ΔΔCt): 1.21±0.13 vs. 1.77±0.15, Vimentin mRNA (2 -ΔΔCt): 1.30±0.14 vs. 1.94±0.20, p-PERK protein (p-PERK/β-actin): 0.38±0.04 vs. 0.92±0.11, p-eIF2α protein (p-eIF2α/β-actin): 0.34±0.05 vs. 1.05±0.13, ATF4 protein (ATF4/β-actin): 0.57±0.06 vs. 0.97±0.11, CHOP protein (CHOP/β-actin): 0.51±0.04 vs. 0.90±0.12, all P < 0.05]. Conclusion:High calcium ion concentrations of 1.75 mmol/L and 2.25 mmol/L promote EMT of HPMC via activating ERS.
3.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
4.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
5.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
6.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
7.Nuclear Magnetic Resonance Analysis Implicates Sex-Specific Dysregulation of the Blood Lipids in Alzheimer’s Disease: A Retrospective Health-Controlled Study
Yanzhe LI ; Xue YU ; Zhonghui MA ; Qinghe LIU ; Min LI ; Xue TIAN ; Baozhu LI ; Ran ZHANG ; Pei GU ; Fengfeng BAI ; Guoshuai LUO ; Meijuan LI ; Daliang SUN
Psychiatry Investigation 2024;21(11):1211-1220
Objective:
The aging demographic landscape worldwide portends a heightened prevalence of neurodegenerative disorders. Foremost among these is Alzheimer’s disease (AD), the foremost cause of dementia in older adults. The shortage of efficacious therapies and early diagnostic indicators underscores the imperative to identify non-invasive biomarkers for early detection and disease monitoring. Recently, blood metabolites have emerged as promising candidates for AD biomarkers.
Methods:
Leveraging nuclear magnetic resonance (NMR) spectroscopy on plasma specimens, we conducted a cross-sectional study encompassing 35 AD patients and 35 age-matched healthy controls. Cognitive function was evaluated using the mini-mental state examination in all participants, followed by peripheral blood sample collection. We utilized univariate and multivariate analyses to perform targeted lipidomic profiling via NMR spectroscopy.
Results:
Our study revealed significant differences in the expression profiles of low-density lipoprotein-associated subfractions in females and high-density lipoprotein-associated subfractions in males between AD patients and healthy controls (all p<0.05). However, there was no significant metabolite overlap between males and females. Furthermore, receiver operating characteristic curve analysis demonstrated that the combination of lipid metabolites had good diagnostic values (all area under the curve>0.70; p<0.05).
Conclusion
Our findings suggest that the blood plasma samples using NMR hold promise in distinguishing between AD patients and healthy controls, with significant clinical implications for advancing AD diagnostic methodologies.
8.Pharmacological inhibition of STING signaling attenu-ates MPTP-induced neuroinflammation and neurode-generation in experimental models of Parkinson's disease
Baozhu WANG ; Jingru QIU ; Shuyan YU ; Deqing SUN ; Haiyan LOU
Chinese Journal of Pharmacology and Toxicology 2023;37(7):506-506
OBJECTIVE To investigate the effects of pharmacological inhibition of STING by C-176,a STING selective inhibitor,in experimental model of Parkinson's disease.METHODS The acute and sub-acute mice mod-els of Parkinson's disease(PD)were established by in-traperitoneal injection of 1-methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydrophine(MPTP).The selective STING inhibitor C-176 was administered by intraperitoneal injec-tion.The potential neuroprotective effects of C-176 were evaluated by behavioral test,tyrosine hydroxylase(TH)immunostaining,Nissl staining,Western blotting,qPCR and immunofluorescence.For in vitro study,the effects of C-176 on LPS/MPP+-induced inflammatory responses in BV2 microglial cells were determined by real time RT-PCR and Western blotting analysis.RESULTS Our study revealed that C-176 significantly inhibited STING signaling activation,ameliorated MPTP-induced dopami-nergic neurotoxicity,motor deficit and associated neuroin-flammation.Furthermore,pharmacological inhibition of STING in BV2 microglia treated with LPS/MPP+ exhibited decreased inflammatory responses.More importantly,C176 also reduced NLRP3 inflammasome activation both in vitro and in vivo.CONCLUSION The results of our study suggest that pharmacologic inhibition of STING protects against neuroinflammation that may act at least in part through suppressing NLRP3 inflammasome acti-vation and thus ameliorated dopaminergic neurodegener-ation.STING signaling may holds great promise for the development of new treatment strategy for PD as an effective therapeutic target.
9.Comparison of the effects between low-level assisted ventilation and T-piece method on respiratory mechanics during weaning of mechanically ventilated patients
Shiya WANG ; Zhenjie JIANG ; Baozhu ZHANG ; Guangsheng LU ; Zhimin WANG ; Zhimin LIN ; Qiang CHEN ; Chun YANG ; Qingwen SUN ; Honglian RUAN ; Yuanda XU
Chinese Critical Care Medicine 2021;33(6):697-701
Objective:To compare the difference of low-level assisted ventilation and T-piece method on respiratory mechanics of patients with invasive mechanical ventilation during spontaneous breathing trial (SBT) within 3 days before extubation.Methods:A retrospective observational study was conducted. Twenty-five patients with difficulty in weaning or delayed weaning from invasive mechanical ventilation who were admitted to department of critical care medicine of the First Affiliated Hospital of Guangzhou Medical University from December 2018 to June 2020, and were in stable condition and entered the weaning stage after more than 72 hours of invasive mechanical ventilation were studied. A total of 119 cases of respiratory mechanical indexes were collected, which were divided into the low-level assisted ventilation group and the T-piece group according to the ventilator method and parameters used during the data collection. The different ventilation modes related respiratory mechanics indexes such as the esophageal pressure (Pes), the gastric pressure (Pga), the transdiaphragmatic pressure (Pdi), the maximum Pdi (Pdimax), Pdi/Pdimax ratio, the esophageal pressure-time product (PTPes), the gastric pressure-time product (PTPga), the transdiaphragmatic pressure-time product (PTPdi), the diaphragmatic electromyography (EMGdi), the maximum diaphragmatic electromyography (EMGdimax), PTPdi/PTPes ratio, Pes/Pdi ratio, the inspiratory time (Ti), the expiratory time (Te) and the total time respiratory cycle (Ttot) at the end of monitoring were recorded and compared between the two groups.Results:Compared with the T-piece group, Pes, PTPes, PTPdi/PTPes ratio, Pes/Pdi ratio and Te were higher in low-level assisted ventilation group [Pes (cmH 2O, 1 cmH 2O = 0.098 kPa): 2.84 (-1.80, 5.83) vs. -0.94 (-8.50, 2.06), PTPes (cmH 2O·s·min -1): 1.87 (-2.50, 5.93) vs. -0.95 (-9.71, 2.56), PTPdi/PTPes ratio: 0.07 (-1.74, 1.65) vs. -1.82 (-4.15, -1.25), Pes/Pdi ratio: 0.17 (-0.43, 0.64) vs. -0.47 (-0.65, -0.11), Te (s): 1.65 (1.36, 2.18) vs. 1.33 (1.05, 1.75), all P < 0.05], there were no significant differences in Pga, Pdi, Pdimax, Pdi/Pdimax ratio, PTPga, PTPdi, EMGdi, EMGdimax, Ti and Ttot between the T-piece group and the low-level assisted pressure ventilation group [Pga (cmH 2O): 6.96 (3.54,7.60) vs. 7.74 (4.37, 11.30), Pdi (cmH 2O): 9.24 (4.58, 17.31) vs. 6.18 (2.98, 11.96), Pdimax (cmH 2O): 47.20 (20.60, 52.30) vs. 29.95 (21.50, 47.20), Pdi/Pdimax ratio: 0.25 (0.01, 0.34) vs. 0.25 (0.12, 0.41), PTPga (cmH 2O·s·min -1): 7.20 (2.54, 9.97) vs. 7.97 (5.74, 13.07), PTPdi (cmH 2O·s·min -1): 12.15 (2.95, 19.86) vs. 6.87 (2.50, 12.63), EMGdi (μV): 0.05 (0.03, 0.07) vs. 0.04 (0.02, 0.06), EMGdimax (μV): 0.07 (0.05, 0.09) vs. 0.07 (0.04, 0.09), Ti (s): 1.20 (0.95, 1.33) vs. 1.07 (0.95, 1.33), Ttot (s): 2.59 (2.22, 3.09) vs. 2.77 (2.35, 3.24), all P > 0.05]. Conclusions:When mechanically ventilated patients undergo SBT, the use of T-piece method increases the work of breathing compared with low-level assisted ventilation method. Therefore, long-term use of T-piece should be avoided during SBT.
10.Effect of flurbiprofen postconditioning on permeability of blood brain barrier in a rat model of focal cerebral ischemia-reperfusion injury
Lili HOU ; Lin CHEN ; Xiaomei YANG ; Xinbing WEI ; Xiumei ZHANG ; Baozhu SUN
Chinese Journal of Anesthesiology 2020;40(7):813-816
Objective:To evaluate the effect of flurbiprofen postconditioning on the permeability of blood brain barrier in a rat model of focal cerebral ischemia-reperfusion (I/R) injury.Methods:Eighty healthy male Wistar rats, aged 8-9 weeks, weighing 280-320 g, were divided into 4 groups ( n=20 each) using a random number table method: sham operation group (group Sham), focal cerebral I/R group (group I/R), lipo-microballoons group (group V) and flurbiprofen 10 mg/kg group (group F). Focal cerebral I/R model was established by left middle cerebral artery occlusion for 2 h followed by 24-h reperfusion in anesthetized rats.Flurbiprofen 10 mg/kg (group F), the equal volume of lipo-microballoons (group V) or the equal volume of normal saline (group Sham and group I/R) was injected via the tail vein at the onset of reperfusion.The rats were sacrificed at 24 h of reperfusion, brains were immediately removed, and cerebral tissues were obtained for measurement of brain water content, Evans blue content, expression of matrix metalloproteinase-9 (MMP-9) in ischemic penumbra (by immuno-histochemistry), and expression of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) and inducible nitric oxide synthase (iNOS) in ischemic penumbra (by Western blot). Results:Compared with Sham group, brain water content and Evans blue content in brain tissues were significantly increased, and the expression of MMP-9, p-p38 MAPK and iNOS in ischemic penumbra was up-regulated in I/R, V and F groups ( P<0.05). Compared with group I/R, brain water content and Evans blue content in brain tissues were significantly decreased, and the expression of MMP-9, p-p38 MAPK and iNOS in ischemic penumbra was down-regulated in group F ( P<0.05), and no significant change was found in the above parameters in group V ( P>0.05). Conclusion:Flurbiprofen postconditioning can decrease the permeability of blood brain barrier during focal cerebral I/R in rats, and the mechanism may be related to inhibiting the activation of p38 MAPK/iNOS signaling pathway and down-regulating the expression of MMP-9.

Result Analysis
Print
Save
E-mail