1.Analysis of Alleviating Effect of Calcium Cyanamide on Replanting Problems of Rehmannia glutinosa
Lianghua LIN ; Hengrui ZHANG ; Haoxiang YU ; Fan YANG ; Yufei WANG ; Caixia XIE ; Tao GUO ; Zhongyi ZHANG ; Liuji ZHANG ; Bao ZHANG ; Suiqing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):212-222
ObjectiveTo investigate the alleviating effect of calcium cyanamide (CaCN2) soil fumigation on replanting problems of Rehmannia glutinosa. MethodsNewly soil (NP) was used as the control group, while three treatment groups were established: replanted soil (RP), newly soil treated with CaCN2 (120 g·m², tillage depth 25 cm) (NPCC), and replanted soil treated with CaCN2 (RPCC). R. glutinosa was cultivated in all groups. At harvest, the tuber agronomic traits (number of enlarged roots, maximum root diameter, fresh weight, dry weight) were measured. The content of catalpol and rehmannioside D was quantified by ultra-high-performance liquid chromatography (UPLC) to evaluate medicinal quality. Rhizosphere soil available nutrients and enzyme activities were analyzed by assay kits. The community structure and composition of fungi and bacteria in rhizosphere soil were assessed via internal transcribed spacer 2 (ITS2) sequencing and 16S rDNA sequencing, respectively. ResultsCompared with NP, the RP group showed obviously reduced in tuber agronomic traits and quality indicators (P0.05). However, the RPCC group showed significant improvement in agronomic traits and a notable increase in rehmannioside D content compared to RP (P0.05). The contents of available phosphorus and potassium in RPCC and NP groups were obviously lower than those in RP (P0.05). The polyphenol oxidase soil (S-PPO) activity in RP was obviously lower than in NP (P0.05), while sucrose soil (S-SC), acid phosphatase soil (S-ACP), and S-PPO activities in RPCC were obviously higher than in RP (P0.05). Microbial richness and diversity in RP were obviously higher than in NP (P0.05), whereas no significant differences were observed between the RPCC and NP. The relative abundances of fungal genera Nectria, Myrothecium, Tomentella, and bacterial genus Skermanella were obviousl lower in RPCC and NP than in RP (P0.05). Correlation analysis that S-ACP activity was positively correlated with the content of rehmannioside D (P0.05). Fungal genera Engyodontium and Alternaria, and bacterial genera Pir4 lineage, Pirellula, Methyloversatilis, Brevundimonas, Ralstonia, and Acidibacter were obviously positively correlated with tuber dry weight (P0.05). Conversely, fungal genera Pseudaleuria, Nectria, Haematonectria, Ceratobasidium, and bacterial genera Streptomyces, Skermanella, RB41, Gemmatimonas, and Bacillus were obviously negatively correlated with dry weight (P0.05). The fungal genus Alternaria and bacterial genera Brevundimonas, Ralstonia, Acidibacter, and Dongia showed positive correlations with medicinal quality of R.glutinosa tuber, while fungal genera Pseudaleuria, Nectria, Stachybotrys, Fusarium, Gibberella, Ceratobasidium, and bacterial genera Sphingomonas, Skermanella, RB41, Gemmatimonas, and Bacillus were obviously negatively correlated (P0.05). ConclusionCaCN2 soil fumigation can significantly improve enzyme activities in replanted Rehmannia rhizosphere soil, enhance the utilization of available nutrients, reshape microbial community structure of replanted R.glutinosa at the family and genus level, and notably improve tuber agronomic traits and medicinal quality. This study provides a novel approach to alleviating replanting problems and offers insights for the integrated development of standardized cultivation techniques, including soil disinfection, nutrient-targeted regulation, and microbial inoculant application.
2.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
3.Screening of aging key genes in Alzheimer's disease based on WGCNA
Xiaolin LI ; Xin SUI ; Ziteng MAN ; Tiantian CHENG ; Juan SONG ; Yanan BAO ; Yu LIN ; Hongyan YANG
China Modern Doctor 2024;62(28):14-20
Objective Using the weighted gene co-expression network analysis(WGCNA)to explore the key genes of aging associated with Alzheimer's disease(AD).Methods GSE132903 was selected from GEO database as the analysis dataset.The differential expressed genes(DEGs)of AD were screened,and visualized with volcano and heat map.Aging and senescence-associated genes(ASAGs)were downloaded from MsigDB,Aging Altas and CellAge databases.WGCNA screened the gene modules with the highest correlation with AD,and genes of key modules subsequently performed with gene ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.AD age-related differential expressed genes(ARDEGs)were obtained by taking intersection genes of DEGs,key module genes of WGCNA and ASAGs.Protein-protein interaction(PPI)network analysis was performed using the STRING database to find key node genes.The co-expression networks and associated functions of key genes were analyzed using the GeneMANIA database.The key genes were validated in Alzdata database.Results 226 DEGs,606 ASAGs and 8 ARDEGs were obtained.The top 5 key genes selected by PPI were SYP,STXBP1,VAMP2,CPLX1 and STX1A.Alzdata database verified that the expressions of 5 key genes in other brain regions of AD were down-regulated,except for no significant changes of VAMP2 in hippocampus and STXBP1 in frontal cortex,as well as no expression of CPLX1 in frontal cortex.The differential expression of VAMP2,STXBP1 and STX1A appeared in the early stage of AD,and CPLX1 was related to the pathological process of Tau.SYP and STXBP1 were related to the pathological processes of amyloid β-protein and Tau.Conclusion SYP,STXBP1,VAMP2,CPLX1 and STX1A are ARDEGs,which are expected to be potential diagnostic and therapeutic targets for AD.
4.Targeting the chromatin structural changes of antitumor immunity
Li NIAN-NIAN ; Lun DENG-XING ; Gong NINGNING ; Meng GANG ; Du XIN-YING ; Wang HE ; Bao XIANGXIANG ; Li XIN-YANG ; Song JI-WU ; Hu KEWEI ; Li LALA ; Li SI-YING ; Liu WENBO ; Zhu WANPING ; Zhang YUNLONG ; Li JIKAI ; Yao TING ; Mou LEMING ; Han XIAOQING ; Hao FURONG ; Hu YONGCHENG ; Liu LIN ; Zhu HONGGUANG ; Wu YUYUN ; Liu BIN
Journal of Pharmaceutical Analysis 2024;14(4):460-482
Epigenomic imbalance drives abnormal transcriptional processes,promoting the onset and progression of cancer.Although defective gene regulation generally affects carcinogenesis and tumor suppression networks,tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes,which may have significant implications for the development and application of epigenetic therapy,cancer immunotherapy,and their combinations.Herein,we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes,DNA methylation,histone post-translational modification,and chromatin structure in tumor immunogenicity,and introduce these epigenetic research methods.We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immuno-therapy through the complex interaction between cancer epigenetics and cancer immunology.
5.The crosstalk of Wnt/β-catenin signaling and p53 in acute kidney injury and chronic kidney disease
Wen-Hua MING ; Lin WEN ; Wen-Juan HU ; Rong-Fang QIAO ; Yang ZHOU ; Bo-Wei SU ; Ya-Nan BAO ; Ping GAO ; Zhi-Lin LUAN
Kidney Research and Clinical Practice 2024;43(6):724-738
Wnt/β-catenin is a signaling pathway associated with embryonic development, organ formation, cancer, and fibrosis. Its activation can repair kidney damage during acute kidney injury (AKI) and accelerate the occurrence of renal fibrosis after chronic kidney disease (CKD). Interestingly, p53 has also been found as a key modulator in AKI and CKD in recent years. Meantime, some studies have found crosstalk between Wnt/β-catenin signaling pathways and p53, but more evidence is required on whether they have synergistic effects in renal disease progression. This article reviews the role and therapeutic targets of Wnt/β-catenin and p53 in AKI and CKD and proposes for the first time that Wnt/β-catenin and p53 have a synergistic effect in the treatment of renal injury.
6.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
7.Structure and Function of Rhizomicrobes Recruited by Acteoside in Root Exudates of Rehmannia glutinosa
Yongxiang ZHANG ; Bao ZHANG ; Lianghua LIN ; Fan YANG ; Shujuan XUE ; Li GU ; Zhongyi ZHANG ; Liuji ZHANG ; Suiqing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):156-165
ObjectiveTo reveal the correlation of Rehmannia glutinosa-soil feedback process with the formation of its continuous cropping obstacles through the identification of the root exudates of R. glutinosa and analysis of the specific rhizomicrobes recruited by the root exudate. MethodThe root exudates of R. glutinosa seedlings germinated under sterilized condition and those enriched in the rhizosphere of R. glutinosa cultivated in the field were collected and analyzed using the ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). The highly abundant compounds identified in the root exudates were added into blank soil, and the soil microbial community was profiled using Illumina Miseq sequencing. The bacterial and fungal functions were predicted by PICRUSt and FUNGuild, respectively. ResultThe identification results showed that seven phenylethanoid glycosides were found in R. glutinosa root exudates, and acteoside possessed the highest abundance. In the soil enriched with acteoside, the bacterial genera such as Agromyces, Pseudomonas, Lysobacter, Sphingobium, Pseudoxanthomonas and Sphingomonas were enriched. For the fungi, the genera Neocosmospora, Plectosphaerella and Dactylonectria, and the species such as Neocosmospora rubicola, Plectosphaerella cucumerina, Dactylonectria alcacerensis and Fusarium solani showed higher abundance. The functional analysis indicated the above-mentioned bacterial genera may realize rapid proliferation by utilizing, biodegrading and transforming phenylethanoid glycosides, and some potential fungal pathogens were colonized. ConclusionThe R. glutinsoa-soil feedbacks were likely generated by the phenylethanoid glycosides in the root exudates together with the specific rhizomicrobes. The investigations of R. glutinsoa-soil feedbacks under continuous cropping system are critical to the further understanding of the underlying mechanisms related to its continuous cropping obstacles.
8.Development of Digital Polymerase Chain Reaction Technology and Its Progress in Disease Detection
Xu-Dong BAO ; Xiao-Lin HU ; Qi-Wu WAN ; Hong ZHANG ; Yang LUO
Chinese Journal of Analytical Chemistry 2024;52(1):13-21
Digital polymerase chain reaction(dPCR)is a PCR technology that realizes accurate quantification of single-copy nucleic acid molecules by dividing the reaction system into tens of thousands of independent PCR reaction units for single-molecule-level amplification and integrating Poisson distribution.Due to its single-copy sensitivity and accurate quantification without the need of standard curves,dPCR has been widely used in disease diagnosis.By introducing technologies such as stepped emulsification and three-dimensional imaging,dPCR has been greatly improved in terms of accuracy,multiplexability and turnaround time,significantly enhancing its performance in clinical disease diagnosis.Based on this,this paper traced the technological development history of dPCR,gave an overview of its application in detection of tumors,infections and other diseases,and further discussed the challenges and opportunities of the development of dPCR,with the aim of providing a reference for the development and utilization of dPCR in the future,and promoting the high-quality development of molecular technology in clinical testing.
10.Low-frequency pulsed magnetic field induces classical transient receptor potential channels 1 to relieve lower limb muscle weakness in patients recovering from COVID-19
Zhongshan LI ; Yijun BAO ; Jie LIU ; Weiqian KONG ; Wei LI ; Lin CHEN ; Shi BAI ; Tieli YANG ; Chunlu WANG
Chinese Journal of Tissue Engineering Research 2024;28(16):2605-2612
BACKGROUND:Muscle weakness is a common symptom after coronavirus disease 2019(COVID-19)infection and affects the ability to perform daily activities in humans during recovery.Low-frequency pulsed magnetic field stimulation at a strength of 1.5 mT and a frequency of 3 300 Hz can enhance the maximal voluntary contraction and strength endurance of human skeletal muscle by inducing and activating classical transient receptor potential channel 1(TRPC1),which produces a series of pathological support effects on muscle tissue.It has not been studied whether this means will improve muscle weakness in patients recovering from COVID-19. OBJECTIVE:To select the low-frequency pulsed magnetic field for magnetic stimulation of lower limb muscle groups in patients with COVID-19,in order to observe the effect of this stimulation on the improvement of muscle weakness of lower limb muscle groups in patients with COVID-19 during the recovery period. METHODS:Fourteen patients infected with COVID-19(Omicron strain)positive for Innovita COVID-19 Ab Test(Colloidal Gold)and accompanied by muscle weakness were recruited and randomly divided into two groups:a test group receiving magnetic field stimulation and a control group receiving sham treatment,respectively.The total duration of the trial was 3 weeks.The test group was given low-frequency pulsed magnetic stimulation of the lower limbs every 48 hours and the control group was given the same intervention procedure as the test group but with sham stimulation.Patients in both groups were not informed whether the magnetic stimulation apparatus was running or not.Nine sessions were performed in both groups and the changes in the maximum voluntary contraction,explosive leg force and strength endurance of the local muscle groups of the lower limbs were subsequently observed in both groups. RESULTS AND CONCLUSION:Among the eight local muscle groups collected,seven local muscle groups in the test group showed an increase in the maximum voluntary contraction value after 3 weeks of low-frequency pulsed magnetic field stimulation.In the control group,there were only three muscle groups with improvement in the maximum voluntary contraction.The rate of improvement in the anterior and posterior muscle groups of the left leg in the test group was significantly higher than that in the control group.The longitudinal jump height and peak angular velocity of the knee joint in both groups were improved compared with the pre-test measurement,and the elevation rate of jumping height in the test group was higher than that in the control group.Under the fatigue condition,the decline rates of peak angular velocity of the knee joint and jumping height in the test group decreased significantly,while those in the control group did not change significantly.The above data confirmed that the low-frequency pulsed magnetic field stimulation with the intensity of 1.5 mT and frequency of 3 300 Hz could improve the muscle strength of more local muscle groups in the lower limbs of patients with COVID-19 during the recovery period compared with the human self-healing process,and the whole-body coordination ability and functional status based on explosive leg force of the legs could be significantly improved.Therefore,low-frequency pulsed magnetic field stimulation can be used as an effective,non-exercise rehabilitation tool to improve muscle weakness in the lower limbs of patients with COVID-19.

Result Analysis
Print
Save
E-mail