1.Presenting characteristics, histological subtypes and outcomes of adult central nervous system tumours: retrospective review of a surgical cohort.
Mervyn Jun Rui LIM ; Yilong ZHENG ; Sean Wai-Onn ENG ; Celest Wen Ting SEAH ; Shuning FU ; Lucas Zheng Long LAM ; Joel Yat Seng WONG ; Balamurugan VELLAYAPPAN ; Andrea Li-Ann WONG ; Kejia TEO ; Vincent Diong Weng NGA ; Sein LWIN ; Tseng Tsai YEO
Singapore medical journal 2025;66(10):545-550
INTRODUCTION:
The most recent local study on the incidence of histological subtypes of all brain and spinal tumours treated surgically was published in 2000. In view of the outdated data, we investigated the presenting characteristics, histological subtypes and outcomes of adult patients who underwent surgery for brain or spinal tumours at our institution.
METHODS:
A single-centre retrospective review of 501 patients who underwent surgery for brain or spinal tumours from 2016 to 2020 was conducted. The inclusion criteria were (a) patients who had a brain or spinal tumour that was histologically verified and (b) patients who were aged 18 years and above at the time of surgery.
RESULTS:
Four hundred and thirty-five patients (86.8%) had brain tumours and 66 patients (13.2%) had spinal tumours. Patients with brain tumours frequently presented with cranial nerve palsy, headache and weakness, while patients with spinal tumours frequently presented with weakness, numbness and back pain. Overall, the most common histological types of brain and spinal tumours were metastases, meningiomas and tumours of the sellar region. The most common complications after surgery were cerebrospinal fluid leak, diabetes insipidus and urinary tract infection. In addition, 15.2% of the brain tumours and 13.6% of the spinal tumours recurred, while 25.7% of patients with brain tumours and 18.2% of patients with spinal tumours died. High-grade gliomas and metastases had the poorest survival and highest recurrence rates.
CONCLUSION
This study serves as a comprehensive update of the epidemiology of brain and spinal tumours and could help guide further studies on brain and spinal tumours.
Humans
;
Retrospective Studies
;
Female
;
Male
;
Middle Aged
;
Adult
;
Aged
;
Central Nervous System Neoplasms/pathology*
;
Brain Neoplasms/pathology*
;
Treatment Outcome
;
Postoperative Complications
;
Young Adult
;
Spinal Neoplasms/pathology*
;
Neoplasm Recurrence, Local
;
Aged, 80 and over
;
Adolescent
2.Research progress on platelets in glioma.
Mingrong ZUO ; Tengfei LI ; Zhihao WANG ; Yufan XIANG ; Siliang CHEN ; Yanhui LIU
Chinese Medical Journal 2025;138(1):28-37
Gliomas are the most common primary neuroepithelial tumors of the central nervous system in adults, of which glioblastoma is the deadliest subtype. Apart from the intrinsically indestructible characteristics of glioma (stem) cells, accumulating evidence suggests that the tumor microenvironment also plays a vital role in the refractoriness of glioblastoma. The primary functions of platelets are to stop bleeding and regulate thrombosis under physiological conditions. Furthermore, platelets are also active elements that participate in a variety of processes of tumor development, including tumor growth, invasion, and chemoresistance. Glioma cells recruit and activate resting platelets to become tumor-educated platelets (TEPs), which in turn can promote the proliferation, invasion, stemness, and chemoresistance of glioma cells. TEPs can be used to obtain genetic information about gliomas, which is helpful for early diagnosis and monitoring of therapeutic effects. Platelet membranes are intriguing biomimetic materials for developing efficacious drug carriers to enhance antiglioma activity. Herein, we review the recent research referring to the contribution of platelets to the malignant characteristics of gliomas and focusing on the molecular mechanisms mediating the interaction between TEPs and glioma (stem) cells, as well as present the challenges and opportunities in targeting platelets for glioma therapy.
Humans
;
Glioma/metabolism*
;
Blood Platelets/physiology*
;
Brain Neoplasms/pathology*
;
Tumor Microenvironment
3.Unlocking therapeutic potential: Exploring nuclear receptors in brain cancer treatment.
Sujitha JAYAPRAKASH ; Hiu Yan LAM ; Ravichandran VISHWA ; Bandari BHARATHWAJCHETTY ; Kenneth C-H YAP ; Mohammed S ALQAHTANI ; Mohamed ABBAS ; Gautam SETHI ; Alan Prem KUMAR ; Ajaikumar B KUNNUMAKKARA
Chinese Medical Journal 2025;138(21):2722-2752
Brain cancer remains among the most lethal malignancies worldwide, with approximately 321,476 new cases and 248,305 deaths reported globally in 2022. The treatment of malignant brain tumors presents substantial clinical challenges, primarily due to their resistance to standard therapeutic approaches. Despite decades of intensive research, effective treatment strategies for brain cancer are still lacking. Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, regulate a broad range of physiological processes including metabolism, immunity, stress response, reproduction, and cellular differentiation. Increasing evidence highlights the involvement of NRs in oncogenesis, with several members demonstrating altered expression and function in brain tumors. Aberrations in NR signaling, encompassing receptors such as androgen receptors, estrogen receptors, estrogen-related receptors, glucocorticoid receptors, NR subfamily 4 group A, NR subfamily 1 group D member 2, NR subfamily 5 group A member 2, NR subfamily 2 group C member 2, liver X receptors, peroxisome-proliferator activated receptors, progesterone receptors, retinoic acid receptors, NR subfamily 2 group E member 1, thyroid hormone receptors, vitamin D receptors, and retinoid X receptors, have been implicated in promoting hallmark malignant phenotypes, including enhanced survival, proliferation, invasion, migration, metastasis, and resistance to therapy. This review aims to explore the roles of key NRs in brain cancer, with an emphasis on their prognostic significance, and to evaluate the therapeutic potential of targeting these receptors using selective agonists or antagonists.
Humans
;
Brain Neoplasms/drug therapy*
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Animals
;
Signal Transduction/physiology*
5.Application of Assessment Scales in Palliative Care for Glioma: A Systematic Review.
Zhi-Yuan XIAO ; Tian-Rui YANG ; Ya-Ning CAO ; Wen-Lin CHEN ; Jun-Lin LI ; Ting-Yu LIANG ; Ya-Ning WANG ; Yue-Kun WANG ; Xiao-Peng GUO ; Yi ZHANG ; Yu WANG ; Xiao-Hong NING ; Wen-Bin MA
Chinese Medical Sciences Journal 2025;40(3):211-218
BACKGROUND AND OBJECTIVE: Patients with glioma experience a high symptom burden and have diverse palliative care needs. However, the assessment scales used in palliative care remain non-standardized and highly heterogeneous. To evaluate the application patterns of the current scales used in palliative care for glioma, we aim to identify gaps and assess the need for disease-specific scales in glioma palliative care. METHODS: We conducted a systematic search of five databases including PubMed, Web of Science, Medline, EMBASE, and CINAHL for quantitative studies that reported scale-based assessments in glioma palliative care. We extracted data on scale characteristics, domains, frequency, and psychometric properties. Quality assessments were performed using the Cochrane ROB 2.0 and ROBINS-I tools. RESULTS: Of the 3,405 records initially identified, 72 studies were included. These studies contained 75 distinct scales that were used 193 times. Mood (21.7%), quality of life (24.4%), and supportive care needs (5.2%) assessments were the most frequently assessed items, exceeding half of all scale applications. Among the various assessment dimensions, the Distress Thermometer (DT) was the most frequently used tool for assessing mood, while the Short Form-36 Health Survey Questionnaire (SF-36) was the most frequently used tool for assessing quality of life. The Mini Mental Status Examination (MMSE) was the most common tool for cognitive assessment. Performance status (5.2%) and social support (6.8%) were underrepresented. Only three brain tumor-specific scales were identified. Caregiver-focused scales were limited and predominantly burden-oriented. CONCLUSIONS: There are significant heterogeneity, domain imbalances, and validation gaps in the current use of assessment scales for patients with glioma receiving palliative care. The scale selected for use should be comprehensive and user-friendly.
Humans
;
Glioma/psychology*
;
Palliative Care/methods*
;
Quality of Life
;
Psychometrics
;
Brain Neoplasms/psychology*
6.Correlation analysis of low expression of LY86-AS1 and KHDRBS2 with immune cell invasion and prognosis in glioblastoma.
Shasha WANG ; Wenhao ZHAO ; Xining HE ; Yangyang ZHANG ; Wenli CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):245-253
Objective To investigate the expression and correlation of LY86-AS1 and KHDRBS2 in glioblastoma (GBM), and their impacts on the prognosis of patients and immune cell infiltration. Methods Based on the GSE50161 dataset from the Gene Expression Omnibus (GEO) database, LY86-AS1 and KHDRBS2, which are closely related to the development of GBM, were identified by WGCNA and differential expression analysis. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to analyze the relationship between the expression of LY86-AS1 and KHDRBS2 and the prognosis of GBM patients. Multiple datasets were employed to analyze the correlation between the expression levels of LY86-AS1 and KHDRBS2 and its relationship with immune cell infiltration. Real-time quantitative PCR was used to verify the expression of LY86-AS1 and KHDRBS2 in GBM and normal brain tissues. The Human Protein Atlas (HPA) database was accessed to obtain the protein expression of KHDRBS2, and immunohistochemical staining was conducted to verify the protein expression of KHDRBS2. Results LY86-AS1 and KHDRBS2 were lowly expressed in GBM tissues and were closely related to the development of GBM, showing a significant positive correlation. Patients with low expression levels of LY86-AS1 and KHDRBS2 had a lower overall survival rate than those with high expression levels. LY86-AS1 was positively correlated with naive B cells, plasma cells, activated NK cells, M1 macrophages, activated mast cells and monocytes. KHDRBS2 was positively correlated with naive B cells, plasma cells, helper T cells, activated NK cells and monocytes. Conclusion The low expression levels of LY86-AS1 and KHDRBS2 in GBM, which is associated with poor prognosis, affect the tumor immune microenvironment and may serve as potential new biomarkers for the diagnosis of GBM and the prognosis assessment of patients.
Humans
;
Glioblastoma/metabolism*
;
Prognosis
;
Brain Neoplasms/pathology*
;
Gene Expression Regulation, Neoplastic
;
RNA-Binding Proteins/metabolism*
7.Sialyltransferase ST3GAL1 promotes malignant progression in glioma.
Zihao ZHAO ; Wenjing ZHENG ; Lingling ZHANG ; Wenjie SONG ; Tao WANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):308-317
Objective To investigate the clinical relevance and diagnostic or prognostic value of ST3β-galactoside α-2, 3-sialyltransferase 1 (ST3GAL1) in glioma and to confirm its role in promoting malignant phenotypes. Methods Using data from The Cancer Genome Atlas (TCGA) database, we analyzed the correlation between ST3GAL1 expression levels in glioma and clinical parameters to evaluate its diagnostic and prognostic value. The impact of ST3GAL1 on malignant phenotypes of glioma cells-including proliferation, cell cycle progression, apoptosis, and invasion was further validated through ST3GAL1 knockdown experiments. Results The expression level of ST3GAL1 was significantly higher in glioma tissues compared to healthy brain tissues and showed a strong correlation with clinical characteristics of glioma patients. Survival analysis and receiver operating characteristic (ROC) curve demonstrated that ST3GAL1 could serve as a potential diagnostic and prognostic biomarker for glioma. Knockdown of ST3GAL1 suppressed proliferation, invasion, and migration capabilities of glioma cell lines, and induced G1-phase cell cycle arrest. Conclusion ST3GAL1 promotes malignant phenotypes in glioma and plays a critical role in its malignant progression, suggesting its potential as a biomarker for glioma diagnosis and prognosis.
Humans
;
Sialyltransferases/metabolism*
;
Glioma/diagnosis*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Brain Neoplasms/enzymology*
;
beta-Galactoside alpha-2,3-Sialyltransferase
;
Disease Progression
;
Prognosis
;
Cell Movement/genetics*
;
Apoptosis/genetics*
;
Male
;
Female
;
Gene Expression Regulation, Neoplastic
;
Biomarkers, Tumor/metabolism*
;
Middle Aged
8.Molecular targeted therapy for progressive low-grade gliomas in children.
Yan-Ling SUN ; Miao LI ; Jing-Jing LIU ; Wen-Chao GAO ; Yue-Fang WU ; Lu-Lu WAN ; Si-Qi REN ; Shu-Xu DU ; Wan-Shui WU ; Li-Ming SUN
Chinese Journal of Contemporary Pediatrics 2025;27(6):682-689
OBJECTIVES:
To evaluate the efficacy of molecular targeted agents in children with progressive pediatric low-grade gliomas (pLGG).
METHODS:
A retrospective analysis was conducted on pLGG patients treated with oral targeted therapies at the Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, from July 2021. Treatment responses and safety profiles were assessed.
RESULTS:
Among the 20 enrolled patients, the trametinib group (n=12, including 11 cases with BRAF fusions and 1 case with BRAF V600E mutation) demonstrated 4 partial responses (33%) and 2 minor responses (17%), with a median time to response of 3.0 months. In the vemurafenib group (n=6, all with BRAF V600E mutation), 5 patients achieved partial responses (83%), showing a median time to response of 1.0 month. Comparative analysis revealed no statistically significant difference in progression-free survival rates between the two treatment groups (P>0.05). The median duration of clinical benefit (defined as partial response + minor response + stable disease) was 11.0 months for vemurafenib and 18.0 months for trametinib. Two additional cases, one with ATM mutation treated with olaparib for 24 months and one with NF1 mutation receiving everolimus for 21 months, discontinued treatment due to sustained disease stability. No severe adverse events were observed in any treatment group.
CONCLUSIONS
Molecular targeted therapy demonstrates clinical efficacy with favorable tolerability in pLGG. Vemurafenib achieves high response rates and induces early tumor shrinkage in patients with BRAF V600E mutations, supporting its utility as a first-line therapy.
Humans
;
Glioma/genetics*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Brain Neoplasms/genetics*
;
Molecular Targeted Therapy/adverse effects*
;
Adolescent
;
Infant
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyrimidinones/therapeutic use*
;
Mutation
9.Advancement in neutrophil-based drug delivery systems.
Journal of Zhejiang University. Medical sciences 2025;54(4):479-488
Neutrophils, as the most abundant immune cells in the human body, possess the inherent ability to rapidly migrate to sites of inflammation and infection. Novel drug delivery systems leveraging neutrophils capitalize on their natural targeting and phagocytic capabilities to achieve precise drug delivery. Efficient drug loading into neutrophils within neutrophil-based delivery systems can be achieved through physical adsorption, chemical conjugation, and phagocytosis. Design strategies emphasize carrier selection and targeting ligand design to enhance delivery precision. Compared to traditional drug delivery systems, neutrophil-based systems offer significant advantages, including excellent biocompatibility and strong tissue penetration. These properties can significantly improve drug bioavailability and reduce adverse reactions associated with non-target tissue accumulation. However, these systems also face several challenges that require resolution, such as difficulties in cell collection and preservation, the need for stability optimization, challenges in large-scale production, and a lengthy clinical translation cycle. In disease treatment applications, neutrophil-based drug delivery systems enable precise delivery of anti-cancer drugs to tumor sites, potentially disrupting immunosuppression of the tumor microenvironment and enhancing therapeutic efficacy. For brain diseases, their unique ability to cross the blood-brain barrier facilitates effective drug delivery. In chronic inflammatory diseases, neutrophil-based systems can precisely deliver anti-inflammatory agents to mitigate inflammation. Performance enhancements for neutrophil-based systems can be achieved by the development of novel nanomaterials and optimization of targeting ligand affinity, thereby improving the accuracy and efficiency of drug delivery. This review comprehensively explores the design strategies, advantages, challenges, and future directions of neutrophil-based drug delivery systems. It summarizes research progress in disease treatment applica-tions, aiming to offer key insights for the development of novel drug delivery systems and advance precision medicine and targeted therapy.
Humans
;
Drug Delivery Systems/methods*
;
Neutrophils
;
Phagocytosis
;
Drug Carriers
;
Blood-Brain Barrier
;
Neoplasms/drug therapy*
10.Clinical Practice Guidelines for the Management of Brain Metastases from Non-small Cell Lung Cancer with Actionable Gene Alterations in China (2025 Edition).
Chinese Journal of Lung Cancer 2025;28(1):1-21
Brain metastasis has emerged as a significant challenge in the comprehensive management of patients with non-small cell lung cancer (NSCLC), particularly in those harboring driver gene mutations. Traditional treatments such as radiotherapy and surgery offer limited clinical benefits and are often accompanied by cognitive dysfunction and a decline in quality of life. In recent years, novel small molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and other pathways have been developed, effectively penetrating the blood-brain barrier while enhancing intracranial drug concentrations and improving patient outcomes. This advancement has transformed the treatment landscape for brain metastases in NSCLC. Consequently, the Lung Cancer Medical Education Committee of the Chinese Medical Education Association and the Brain Metastasis Collaboration Group of the Lung Cancer Youth Expert Committee of the Beijing Medical Reward Foundation have jointly initiated and formulated the Clinical Practice Guidelines for the Management of Brain Metastases from Non-small Cell Lung Cancer with Actionable Gene Alterations in China (2025 Edition). This guideline integrates the latest research findings with clinical experience, adhering to multidisciplinary treatment principles, and encompasses aspects such as diagnosis, timing of intervention, and systemic and local treatment options for driver gene positive NSCLC brain metastases. Additionally, it proposes individualized treatment strategies tailored to different driver gene types, aiming to provide clinicians with a reference to enhance the overall diagnostic and therapeutic standards for NSCLC brain metastases in China.
.
Humans
;
Brain Neoplasms/drug therapy*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
China
;
Lung Neoplasms/genetics*

Result Analysis
Print
Save
E-mail