1.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
2.Establishment of tissue culture and rapid propagation system of Artemisia stolonifera.
Chu WANG ; Ya XU ; Yang XU ; Ye WANG ; Na-Na CHANG ; Lu-Qi HUANG ; Hui LI
China Journal of Chinese Materia Medica 2025;50(11):2994-3000
As a high-quality moxibustion material, Artemisia stolonifera has high economic value and research prospects. However, due to difficulties in seed germination, its wild germplasm resources are sparsely distributed in China. This study used young stem segments grown in the current year to investigate the effects of explant sterilization, different combinations and concentrations of plant growth regulators on the proliferation and rooting of adventitious shoots, with the aim of constructing an in vitro rapid propagation technology system for A. stolonifera. The results showed that the lowest contamination rate of 25.83% was achieved when sterilizing the stem segments by rinsing with running water for 30 min, soaking in 75% ethanol for 30 s, followed by a 5 min treatment with 0.1% HgCl_2, 10 min with 8% NaClO, and 10 min with 0.6% phytosaniline. There was no browning of the stem segments, and surface sterilization of the A. stolonifera stem segments was successfully achieved. In the induction culture phase, when the concentration of kinetin(KT) was 0.05 mg·L~(-1) and 6-benzylaminopurine(6-BA) was 0.05 mg·L~(-1), the adventitious shoot proliferation coefficient was 2.02, effectively promoting the proliferation and growth of A. stolonifera. In the rooting culture phase, 0.1 mg·L~(-1) 1-naphthaleneacetic acid(NAA) effectively induced A. stolonifera test-tube seedlings to root within a short period, achieving a rooting rate of 100%. The addition of a small amount of activated charcoal also promoted rooting and strengthened seedling growth. The survival rate of A. stolonifera seedlings transplanted into a substrate consisting of 90% nutrient soil and 10% perlite was 100%. This study established an efficient in vitro rapid propagation system for A. stolonifera, overcoming difficulties with seed germination, shortening the breeding cycle, and reducing production and planting costs. It provides technical support for the introduction, domestication, seedling propagation, germplasm conservation, and industrial development of A. stolonifera.
Artemisia/drug effects*
;
Tissue Culture Techniques/methods*
;
Plant Growth Regulators/pharmacology*
;
Plant Stems/drug effects*
;
Plant Shoots/drug effects*
3.Quality changes of volatile oil and chlorogenic acid compounds during extraction process of Artemisiae Argyi Folium: process analysis based on chemical composition, physicochemical properties, and biological activity.
Dan-Dan YANG ; Hao-Zhou HUANG ; Xin-Ming CHEN ; Lin HUANG ; Ya-Nan HE ; Zhen-Feng WU ; Xiao-Ming BAO ; Ding-Kun ZHANG ; Ming YANG
China Journal of Chinese Materia Medica 2025;50(11):3001-3012
To explore the variation laws of volatile oil during the extraction process of Artemisiae Argyi Folium and its impact on the quality of the medicinal solution, as well as to achieve precise control of the extraction process, this study employed headspace solid phase microextraction gas chromatography-mass spectrometry(HS-SPME-GC-MS) in combination with multiple light scattering techniques to conduct a comprehensive analysis, identification, and characterization of the changes in volatile components and the physical properties of the medicinal solution during the extraction process. A total of 82 volatile compounds were identified using the HS-SPME-GC-MS technique, including 21 alcohols, 15 alkenes, 14 ketones, 9 acids, 6 aldehydes, 5 phenols, 3 esters, and 9 other types of compounds. At different extraction time points(15, 30, 45, and 60 min), 71, 72, 64, and 44 compounds were identified in the medicinal solution, respectively. It was observed that the content of volatile components gradually decreased with the extension of extraction time. Through multivariate statistical analysis, four compounds with significant differences during different extraction time intervals were identified, namely 1,8-cineole, terpinen-4-ol, 3-octanone, and camphor. RESULTS:: from multiple light scattering techniques indicated that at 15 minutes of extraction, the transmittance of the medicinal solution was the lowest(25%), the particle size was the largest(0.325-0.350 nm), and the stability index(turbiscan stability index, TSI) was the highest(0-2.5). With the extension of extraction time, the light transmittance of the medicinal solution improved, stability was enhanced, and the particle size decreased. These laws of physicochemical property changes provide important basis for the control of Artemisiae Argyi Folium extraction process. In addition, the changes in the bioactivity of Artemisiae Argyi Folium extracts during the extraction process were investigated through mouse writhing tests and antimicrobial assays. The results indicated that the analgesic and antimicrobial effects of the medicinal solution were strongest at the 15-minute extracting point. In summary, the findings of this study demonstrate that the content of volatile oil in Artemisiae Argyi Folium extracts gradually decreases with the extension of extraction time, and the variation in volatile oil content directly influences the physicochemical properties and pharmacological efficacy of the medicinal solution. This discovery provides important scientific reference for the optimization of Artemisiae Argyi Folium extraction processes and the development and application of process analytical technologies.
Oils, Volatile/pharmacology*
;
Artemisia/chemistry*
;
Gas Chromatography-Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Chlorogenic Acid/pharmacology*
;
Solid Phase Microextraction
;
Quality Control
4.Pollen-food allergy syndrome: association between allergen cross-reactivity and symptom severity.
Yuqiao ZHANG ; Fengxia YANG ; Xiaohui YAN ; Xueliang SHEN ; Ningyu FENG ; Ting YAO ; Shurong LI ; Xiyuan YAN ; Ruixia MA
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(12):1156-1162
Objective:To investigate the clinical characteristics and major allergens of patients with pollen-food allergy syndrome(PFAS) and their correlation with the severity of symptoms, and to provide a basis for identifying high-risk patients, optimizing the allergen testing process and developing individualized dietary management strategies. Methods:The clinical data of 166 patients with PFAS admitted to our hospital from January 2021 to July 2023 were retrospectively analyzed. The clinical symptoms, pollen types and food allergy of the patients were analyzed by questionnaire survey and serum specific IgE detection. phi coefficient, Apriori algorithm modeling and multivariate logistic regression analysis were used to evaluate the association between allergen and symptom severity. Results:Artemisia pollen was the most common allergen in this area, with a positive rate of 96.39%. Peach and mango were the most common food allergens, which caused allergic reactions in 24.10% and 22.89% of patients, respectively. Oral mucosal symptoms were the main symptoms. Correlation analysis showed that there was a correlation between pollen allergens and allergenic food. Association rule analysis showed that when the patient was allergic to the combination of peanuts and trees, the probability of high severity of symptoms was 82.35%. Multivariate analysis showed that ragweed allergy was significantly positively correlated with the severity of PFAS symptoms. Conclusion:Artemisia pollen and related food allergens play an important role in the pathogenesis of PFAS. Association rule mining and network map analysis revealed direct associations between peanut and tree combination allergy and symptom severity, as well as potential links between other inhaled allergens and specific food allergies. Ragweed and peach allergy are independent risk factors for the aggravation of PFAS symptoms, which can be used as early warning indicators. These results help to improve the screening of high-risk patients and the construction of regional allergen databases.
Humans
;
Food Hypersensitivity/immunology*
;
Allergens/immunology*
;
Retrospective Studies
;
Pollen/immunology*
;
Cross Reactions
;
Immunoglobulin E/blood*
;
Rhinitis, Allergic, Seasonal/immunology*
;
Artemisia/immunology*
;
Male
;
Female
;
Adult
;
Prunus persica/immunology*
;
Arachis/immunology*
;
Middle Aged
;
Surveys and Questionnaires
;
Oral Allergy Syndrome
5.Deciphering the therapeutic potential and mechanisms of Artemisia argyit essential oil on flagellum-mediated Salmonella infections.
Linlin DING ; Lei XU ; Na HU ; Jianfeng WANG ; Jiazhang QIU ; Qingjie LI ; Xuming DENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):714-726
Salmonellosis represents a global epidemic, and the emergence of extensively drug-resistant (XDR) Salmonella and its sustained transmission worldwide constitutes a significant public health concern. Flagellum-mediated motility serves as a crucial virulence trait of Salmonella that guides the pathogen toward the epithelial surface, enhancing gut colonization. Artemisia argyit essential oil, a traditional herb extract, demonstrates efficacy in treating inflammation-related symptoms and diseases; however, its effects on flagellum assembly and expression mechanisms in anti-Salmonella activity remain inadequately explored. This study aimed to elucidate the mechanism by which Artemisia argyit essential oil addresses Salmonella infections. Network pharmacological analysis revealed that Traditional Chinese Medicine (TCM) Artemisia argyit exhibited anti-Salmonella infection potential and inhibited flagellum-dependent motility. The application of Artemisia argyit essential oil induced notable motility defects through the downregulation of flagellar and fimbriae expression. Moreover, it significantly reduced Salmonella-infected cell damage by interfering with flagellum-mediated Salmonella colonization. In vivo studies demonstrated that Artemisia argyit essential oil administration effectively alleviated Salmonella infection symptoms by reducing bacterial loads, inhibiting interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) production, and diminishing pathological injury. Gas chromatography-mass spectrometry (GC-MS) analysis identified forty-three compounds in Artemisia argyit essential oil, with their corresponding targets and active ingredients predicted. Investigation of an in vivo model of Salmonella infection using the active ingredient demonstrated that alpha-cedrene ameliorated Salmonella infection. These findings suggest the potential application of Artemisia argyit essential oil in controlling Salmonella, the predominant food-borne pathogen.
Artemisia/chemistry*
;
Oils, Volatile/chemistry*
;
Animals
;
Flagella/drug effects*
;
Salmonella Infections/microbiology*
;
Humans
;
Mice
;
Anti-Bacterial Agents/pharmacology*
;
Salmonella/pathogenicity*
6.Identification and biomimetic synthesis of iphionanes and cyperanes from Artemisia hedinii and their anti-hepatic fibrosis activity.
Xiaofei LIU ; Xing WANG ; Chunping TANG ; Changqiang KE ; Bintao HU ; Sheng YAO ; Yang YE
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):871-880
Two novel skeleton sesquiterpenoids (1 and 6), along with four new iphionane-type sesquiterpenes (2-5) and six new cyperane-type sesquiterpenes (7-11), were isolated from the whole plant of Artemisia hedinii (A. hedinii). The two novel skeleton compounds (1 and 6) were derived from the decarbonization of iphionane and cyperane-type sesquiterpenes, respectively. Their structures were elucidated through a comprehensive analysis of spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. The absolute configurations were determined using electronic circular dichroism (ECD) spectra, single-crystal X-ray crystallographic analyses, time-dependent density functional theory (TDDFT) ECD calculation, density functional theory (DFT) NMR calculations, and biomimetic syntheses. The biomimetic syntheses of the two novel skeletons (1 and 6) were inspired by potential biogenetic pathways, utilizing a predominant eudesmane-type sesquiterpene (A) in A. hedinii as the substrate. All compounds were evaluated in LX-2 cells for their anti-hepatic fibrosis activity. Compounds 2, 8, and 10 exhibited significant activity in downregulating the expression of α-smooth muscle actin (α-SMA), a protein involved in hepatic fibrosis.
Artemisia/chemistry*
;
Sesquiterpenes/chemical synthesis*
;
Molecular Structure
;
Humans
;
Liver Cirrhosis/genetics*
;
Biomimetics
;
Plant Extracts/pharmacology*
7.Artemisia argyi extract subfraction exerts an antifungal effect against dermatophytes by disrupting mitochondrial morphology and function.
Le CHEN ; Yunyun ZHU ; Chaowei GUO ; Yujie GUO ; Lu ZHAO ; Yuhuan MIAO ; Hongzhi DU ; Dahui LIU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):47-61
Artemisia argyi (A. argyi), a plant with a longstanding history as a raw material for traditional medicine and functional diets in Asia, has been used traditionally to bathe and soak feet for its disinfectant and itch-relieving properties. Despite its widespread use, scientific evidence validating the antifungal efficacy of A. argyi water extract (AAWE) against dermatophytes, particularly Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, remains limited. This study aimed to substantiate the scientific basis of the folkloric use of A. argyi by evaluating the antifungal effects and the underlying molecular mechanisms of its active subfraction against dermatophytes. The results indicated that AAWE exhibited excellent antifungal effects against the three aforementioned dermatophyte species. The subfraction AAWE6, isolated using D101 macroporous resin, emerged as the most potent subfraction. The minimum inhibitory concentrations (MICs) of AAWE6 against T. rubrum, M. gypseum, and T. mentagrophytes were 312.5, 312.5, and 625 μg·mL-1, respectively. Transmission electron microscopy (TEM) results and assays of enzymes linked to cell wall integrity and cell membrane function indicated that AAWE6 could penetrate the external protective barrier of T. rubrum, creating breaches ("small holes"), and disrupt the internal mitochondrial structure ("granary"). Furthermore, transcriptome data, quantitative real-time PCR (RT-qPCR), and biochemical assays corroborated the severe disruption of mitochondrial function, evidenced by inhibited tricarboxylic acid (TCA) cycle and energy metabolism. Additionally, chemical characterization and molecular docking analyses identified flavonoids, primarily eupatilin (131.16 ± 4.52 mg·g-1) and jaceosidin (4.17 ± 0.18 mg·g-1), as the active components of AAWE6. In conclusion, the subfraction AAWE6 from A. argyi exerts antifungal effects against dermatophytes by disrupting mitochondrial morphology and function. This research validates the traditional use of A. argyi and provides scientific support for its anti-dermatophytic applications, as recognized in the Chinese patent (No. ZL202111161301.9).
Antifungal Agents/chemistry*
;
Arthrodermataceae
;
Artemisia/chemistry*
;
Molecular Docking Simulation
;
Mitochondria
;
Microbial Sensitivity Tests
8.Development of DUS testing guidelines of Artemisia argyi.
Chang-Jie CHEN ; Yu-Huan MIAO ; Xiu-Fu WAN ; Lan-Ping GUO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2024;49(21):5835-5842
Artemisia argyi is a perennial herbaceous herb of the Artemisia family, with leaves for medical use. However, the germplasm of A. argyi is seriously unclear and mixed during production, and it is urgent to protect new varieties of A. argyi. The distinctness, uniformity, and stability(DUS) testing of the new varieties of plants is the basis for the protection of new varieties of plants, and the development of the DUS testing guidelines is the technical basis for DUS testing. To develop the DUS testing guidelines of A. argyi, A. argyi of 100 germplasm was used as the research objects, and their agronomic and medicinal quality characters were observed and measured during six growth stages, and each character was graded and described. A total of 53 test characters were determined, including 19 characters that must be tested; there were four plant characters, two rhizome characters, five stem characters, three branching characters, 29 leaf characters, three floral characters, five medicinal quality characters, and two other characters. It also involved 16 quality characters, 22 quantitative characters, and 15 pseudo-quantitative characters. Seven grouping characters were determined from 53 characters, including "emergence period" "plant-plant type" "branching-primary branching site" "stem-color" "middle leaf-number of leaf splits" "budding period", and "plant-height". By searching for standard characters, 16 standard varieties were ultimately determined. The preparation of this guideline was of great significance for the review and protection of new A. argyi varieties, the protection of breeders' rights, and the promotion of the development of A. argyi industry.
Artemisia/chemistry*
;
Plant Leaves/chemistry*
;
Quality Control
;
Plants, Medicinal/classification*
;
Guidelines as Topic
9.Mini-barcode combined with ITS2 for identification of bulk Artemisiae Scopariae Herba.
Xin-Yi LI ; Hua GUO ; Ming-Xue MA ; Liu-Wei XU ; Yu-Hua HUANG ; Yun ZHANG ; Cui-Ping YANG ; Feng HE ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2024;49(24):6685-6691
Artemisiae Scoporiae Herba is derived from Artemisia scoparia or A. capillaris. The accurate identification of the herbs, particularly when dealing with bulk samples, is critical for ensuring the quality and efficacy of the medicinal product. This study aimed to establish a comprehensive molecular approach by combining multiple markers for the precise identification of Artemisiae Scoporiae Herba. The ITS2 from A. scoparia, A. capillaris, and other common Artemisia species were retrieved from GenBank. MEGA was used to build a phylogenetic tree with these sequences, and the effectiveness of ITS2 in species identification was assessed. The analysis revealed that while ITS2 could distinguish Artemisiae Scoporiae Herba from other closely related species of Artemisia, it was insufficient to differentiate between A. scoparia and A. capillaris. To address this limitation, the chloroplast genome of A. capillaris was assembled and compared with the published chloroplast genomes of A. scoparia and A. capillaris, on the basis of which a DNA mini-barcode was developed. The rpoA-rps11 region was selected as the target for the development of mini-barcode due to its potential for distinguishing between these two species. Specific primers were designed to differentiate A. scoparia from A. capillaris. The ITS2 sequences and the newly developed mini-barcode were used together for Sanger sequencing to identify individual samples of Artemisiae Scoporiae Herba, while DNA metabarcoding was employed for the identification of bulk samples. The identification results of representative individual samples and bulk samples from different regions consistently confirmed A. capillaris. This study established a method that combined ITS2 and mini-barcode to identify bulk samples of Artemisiae Scoporiae Herba from different regions. This approach overcomes the limitations of morphological and chemical methods, enhancing species identification accuracy and supporting a stable supply of medicinal materials.
Artemisia/classification*
;
DNA Barcoding, Taxonomic/methods*
;
Phylogeny
;
DNA, Plant/genetics*
;
DNA, Ribosomal Spacer/genetics*
10.Quality of moxa from Artemisia argyi and A. stolonifera in different storage years based on simultaneous thermal analysis.
Bing YI ; Jia-Qi QIAO ; Li-Chun ZHAO ; Xian-Zhang HUANG ; Da-Hui LIU ; Li ZHOU ; Li-Ping KANG ; Yuan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3693-3700
The quality of moxa is an important factor affecting moxibustion therapy, and traditionally, 3-year moxa is considered optimal, although scientific data are lacking. This study focused on 1-year and 3-year moxa from Artemisia stolonifera and A. argyi(leaf-to-moxa ratio of 10∶1) as research objects. Scanning electron microscopy(SEM), Van Soest method, and simultaneous thermal analysis were used to investigate the differences in the combustion heat quality of 1-year and 3-year moxa and their influencing factors. The results showed that the combustion of A. stolonifera moxa exhibited a balanced heat release pattern. The 3-year moxa released a concentrated heat of 9 998.84 mJ·mg~(-1)(accounting for 54% of the total heat release) in the temperature range of 140-302 ℃, with a heat production efficiency of 122 mW·mg~(-1). It further released 7 512.51 mJ·mg~(-1)(accounting for 41% of the total heat release) in the temperature range of 302-519 ℃. The combustion of A. argyi moxa showed a rapid heat release pattern. The 3-year moxa released a heat of 16 695.28 mJ·mg~(-1)(accounting for 70% of the total heat release) in the temperature range of 140-311 ℃, with an instantaneous power output of 218 mW·mg~(-1). It further released 5 996.95 mJ·mg~(-1)(accounting for 25% of the total heat release) in the temperature range of 311-483 ℃. Combustion parameters such as-R_p,-R_v, D_i, C, and D_b indicated that the combustion heat quality of 3-year moxa was superior to that of 1-year moxa. It exhibited greater combustion heat, heat production efficiency, flammability, mild and sustained burning, and higher instantaneous combustion efficiency. This study utilized scientific data to demonstrate that A. stolonifera could be used as excellent moxa, and the quality of 3-year moxa surpassed that of 1-year moxa. The research results provide a scientific basis for the in-depth development of A. stolonifera moxa and the improvement of moxa quality standards.
Artemisia
;
Hot Temperature
;
Moxibustion
;
Plant Leaves

Result Analysis
Print
Save
E-mail