1.Targeted Regulation of Inflammation-related Signaling Pathways by Traditional Chinese Medicine for Prevention and Treatment of Atherosclerosis: A Review
Shuang ZHAO ; Mingxue ZHANG ; Ning LIU ; Jianan SU ; Yuhan AO ; Jing LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):273-283
Atherosclerosis (AS) is the main pathological basis of cardiovascular diseases and seriously threatens human quality of life. Its prevention and treatment urgently need breakthroughs. The inflammatory response, which runs through the physiological and pathological evolution process of AS, is one of the important mechanisms for AS occurrence. Currently, the treatment methods for AS in Western medicine are relatively mature. However, they have adverse reactions such as abnormal liver and kidney function, drug tolerance, target vessel restenosis, and stent thrombosis, which remain the key bottleneck restricting clinical efficacy. Traditional Chinese medicine (TCM), characterized by multiple components, multiple targets, and multi-pathway synergy, shows unique clinical application potential and efficacy advantages in the intervention of AS. This article reviewed the research progress of TCM in intervening in AS by regulating inflammatory-related signaling pathways, such as nuclear factor-κB (NF-κB), Toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT), in the past five years. It summarized the combined mechanism of action of TCM monomers, TCM pairs, and compound preparations in inhibiting the inflammatory cascade reaction through multiple targets, regulating lipid metabolism disorders, and improving vascular endothelial dysfunction and the imbalance of the microenvironment. It deepened the research on the molecular mechanism of TCM in anti-AS, so as to provide a scientific basis for the clinical transformation application and related theoretical research of TCM in anti-AS.
2.Targeted Regulation of Inflammation-related Signaling Pathways by Traditional Chinese Medicine for Prevention and Treatment of Atherosclerosis: A Review
Shuang ZHAO ; Mingxue ZHANG ; Ning LIU ; Jianan SU ; Yuhan AO ; Jing LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):273-283
Atherosclerosis (AS) is the main pathological basis of cardiovascular diseases and seriously threatens human quality of life. Its prevention and treatment urgently need breakthroughs. The inflammatory response, which runs through the physiological and pathological evolution process of AS, is one of the important mechanisms for AS occurrence. Currently, the treatment methods for AS in Western medicine are relatively mature. However, they have adverse reactions such as abnormal liver and kidney function, drug tolerance, target vessel restenosis, and stent thrombosis, which remain the key bottleneck restricting clinical efficacy. Traditional Chinese medicine (TCM), characterized by multiple components, multiple targets, and multi-pathway synergy, shows unique clinical application potential and efficacy advantages in the intervention of AS. This article reviewed the research progress of TCM in intervening in AS by regulating inflammatory-related signaling pathways, such as nuclear factor-κB (NF-κB), Toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT), in the past five years. It summarized the combined mechanism of action of TCM monomers, TCM pairs, and compound preparations in inhibiting the inflammatory cascade reaction through multiple targets, regulating lipid metabolism disorders, and improving vascular endothelial dysfunction and the imbalance of the microenvironment. It deepened the research on the molecular mechanism of TCM in anti-AS, so as to provide a scientific basis for the clinical transformation application and related theoretical research of TCM in anti-AS.
3.Association between screen time and anxiety-depression symptoms and their comorbidity among middle school students in Taiyuan City
Chinese Journal of School Health 2025;46(7):980-984
Objective:
To investigate the association between screen time (ST) during leisure time and anxiety-depression symptoms among middle school students, so as to provide a basis for formulating relevant intervention measures.
Methods:
From November to December 2023, a stratified cluster random sampling method was used to select 2 542 students from junior and senior high school in Taiyuan City. A self designed questionnaire, the Generalized Anxiety Disorder Scale (GAD-7), and the Patient Health Questionnaire (PHQ-9) were used to investigate ST and anxiety/depression symptoms among middle school students. The Logistic regression model was used to explore the association of ST with symptoms of anxiety and depression, as well as with anxiety and depression comorbiditles (CAD).
Results:
The detection rates of anxiety symptoms, depression symptoms, and CAD were 13.69%, 15.77%, and 10.11%, respectively. The median ST was 2.00 h/d [interquartile range ( IQR =2.38) for weekly averages], with 0.33 h/d ( IQR =1.67) on work days and 5.00 h/d ( IQR=5.50) on rest days. Logistic regression analysis indicated that the total ST of mobile phones during rest days ( OR =1.07, 1.10, 1.11) and the averages ST of mobile phones over a week ( OR = 1.20 , 1.22, 1.29), as well as the total ST of all screen types during rest days ( OR =1.04, 1.04, 1.05) and the averages ST of all screen types over a week ( OR =1.08, 1.09, 1.21) were positively correlated with anxiety symptoms, depression symptoms, and CAD (all P <0.01).
Conclusions
Among middle school students in Taiyuan City, screen time is positively correlated with symptoms of anxiety or depression and the comorbidity of anxiety and depression, especially smartphone screen time and weekend screen use. Therefore, measures should be implemented to reduce unnecessary screen time among middle school students, especially the use of mobile phones, in order to mitigate the occurrence of anxiety and depression.
4.YOLOX-SwinT algorithm improves the accuracy of AO/OTA classification of intertrochanteric fractures by orthopedic trauma surgeons.
Xue-Si LIU ; Rui NIE ; Ao-Wen DUAN ; Li YANG ; Xiang LI ; Le-Tian ZHANG ; Guang-Kuo GUO ; Qing-Shan GUO ; Dong-Chu ZHAO ; Yang LI ; He-Hua ZHANG
Chinese Journal of Traumatology 2025;28(1):69-75
PURPOSE:
Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification.
METHODS:
We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the SPSS 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1.
RESULTS:
The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS.
CONCLUSION
In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.
Humans
;
Hip Fractures/diagnostic imaging*
;
Orthopedic Surgeons
;
Algorithms
;
Artificial Intelligence
6.A promising novel local anesthetic for effective anesthesia in oral inflammatory conditions through reducing mitochondria-related apoptosis.
Haofan WANG ; Yihang HAO ; Wenrui GAI ; Shilong HU ; Wencheng LIU ; Bo MA ; Rongjia SHI ; Yongzhen TAN ; Ting KANG ; Ao HAI ; Yi ZHAO ; Yaling TANG ; Ling YE ; Jin LIU ; Xinhua LIANG ; Bowen KE
Acta Pharmaceutica Sinica B 2025;15(11):5854-5866
Local anesthetics (LAs), such as articaine (AT), exhibit limited efficacy in inflammatory environments, which constitutes a significant limitation in their clinical application within oral medicine. In our prior research, we developed AT-17, which demonstrated effective properties in chronic inflammatory conditions and appears to function as a novel oral LA that could address this challenge. In the present study, we further elucidated the beneficial effects of AT-17 in acute inflammation, particularly in oral acute inflammation, where mitochondrial-related apoptosis played a crucial role. Our findings indicated that AT-17 effectively inhibited lipopolysaccharide (LPS)-induced nerve cell apoptosis by ameliorating mitochondrial dysfunction in vitro. This process involved the inhibition of mitochondrial reactive oxygen species (mtROS) production and the subsequent activation of the NRF2 pathway. Most notably, improvements in mitochondria-related apoptosis were key contributors to AT-17's inhibition of voltage-gated sodium channels. Additionally, AT-17 was shown to reduce mtROS production in nerve cells through the Na+/NCLX/ETC signaling axis. In conclusion, we have developed a novel local anesthetic that exhibits pronounced anesthetic functionality under inflammatory conditions by enhancing mitochondria-related apoptosis. This advancement holds considerable promise for future drug development and deepening our understanding of the underlying mechanisms of action.
7.Ziwuliuzhu acupuncture modulates Glu/GABA‑Gln metabolic loop abnormalities in insomniac rats.
Jiarong XU ; Ao HUANG ; Zhikai DING ; Yu BAO ; Canghuan ZHAO ; Wenzhi CAI
Journal of Southern Medical University 2025;45(8):1616-1624
OBJECTIVES:
To investigate the therapeutic effect of Ziwuliuzhu acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
METHODS:
Forty male SD rats were randomly assigned to control group, model group, Najia group and Nazi group (n=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test. After modeling, the rats in Najia and Nazi groups received acupuncture for 7 days at specifically chosen sets of acupoints based on the Ziwuliuzhu rationale in traditional Chinese medicine. Pathological changes in the hypothalamic tissue of the rats were examined with HE staining, and the levels of Glu and GABA in the hypothalamus were determined with high-performance liquid chromatography (HPLC)-mass spectrometry (MS)/MS. Immunohistochemistry was used to detect the expressions of GABAA receptors (GABAARs) in the hypothalamus, and the expression levels of glutamate decarboxylase (GAD65/67) and glutamine synthetase (GS) were determined with Western blotting.
RESULTS:
Compared with the model group, the rats in Najia and Nazi groups exhibited decreased Glu levels and GABAA receptor expression and increased GABA levels with a decreased Glu/GABA ratio in the hypothalamus. Ziwuliuzhu acupuncture significantly increased the protein expressions of GAD65 and GAD67 and lowered the expression of GS in the hypothalamus in the rat models of insomnia.
CONCLUSIONS
Ziwuliuzhu acupuncture produces sedative and hypnotic effects in rat models of insomnia possibly by regulating Glu and GABA-Gln metabolism to restore the excitatory/inhibitory balance between Glu and GABA.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep Initiation and Maintenance Disorders/therapy*
;
Glutamine/metabolism*
;
Glutamic Acid/metabolism*
;
Acupuncture Therapy
;
Hypothalamus/metabolism*
;
Receptors, GABA-A/metabolism*
;
Acupuncture Points
8.Unlocking the dual role of autophagy: A new strategy for treating lung cancer.
Fei TANG ; Jing-Nan ZHANG ; Xiao-Lan ZHAO ; Li-Yue XU ; Hui AO ; Cheng PENG
Journal of Pharmaceutical Analysis 2025;15(3):101098-101098
Lung cancer exhibits the highest incidence and mortality rates among cancers globally, with a five-year overall survival rate alarmingly below 20%. Targeting autophagy, though a controversial therapeutic strategy, is extensively employed in clinical practice. Current research is actively pursuing various therapeutic strategies using small molecules to exploit the dual function of autophagy. Nevertheless, the pivotal question of enhancing or inhibiting autophagy in cancer therapy merits further attention. This review aims to provide a comprehensive overview of the mechanisms of autophagy in lung cancer. It also explores recent advances in targeting cytotoxic autophagy and inhibiting protective autophagy with small molecules to induce cell death in lung cancer cells. Notably, most autophagy-targeting drugs, primarily natural small molecules, have demonstrated that activating cytotoxic autophagy effectively induces cell death in lung cancer, as opposed to inhibiting protective autophagy. These insights contribute to identifying druggable targets and drug candidates for potential autophagy-related lung cancer therapies, offering promising approaches to combat this disease.
9.Sanguinarine alleviates ulcerative colitis in mice by regulating the Nrf2/NF-κB pathway
Na ZHAO ; Mengdi SHEN ; Rui ZHAO ; Di AO ; Zetan LUO ; Yinliang ZHANG ; Zhidong XU ; Fangtian FAN ; Hailun ZHENG
Journal of Southern Medical University 2024;44(8):1467-1475
Objective To investigate the mechanism of sanguinarine(SA)for alleviating ulcerative colitis(UC)induced by dextran sodium sulfate(DSS)in mice.Methods Male C57BL/6 mouse models of 3.5%DSS-induced UC were randomized for treatment with 1,5 and 10 mg/kg SA by gavage,400 mg/kg sulfasalazine by gavage,or 10 mg/kg SA combined with intraperitoneal injection of 30 mg/kg ML385(a Nrf2 inhibitor).The changes in intestinal inflammation was assessed by monitoring weight changes,disease activity index(DAI)score,colon length measurement,and HE staining.After the treatments,the colon tissues were collected for detection of malondialdehyde(MDA)content using colorimetry,mRNA expressions of inflammatory factors using RT-qPCR,and the expressions of Nrf2,HO-1,Keap-1,p-p65,p65,occludin,and ZO-1 proteins were detected using Western blotting.Results SA treatment obviously alleviated weight loss,colon length shortening and DAI score increase and ameliorated structural destruction of the colon glands and colonic crypts in mice with DSS-induced UC.SA intervention significantly decreased the levels of TNF-α,IL-1β and IL-6 mRNA and lowered ROS and MDA levels in the colon tissue of UC mice.The mouse models receiving SA treatment showed significantly increased expressions of Nrf2,HO-1,occludin and ZO-1 and lowered expressions of Keap-1 and P-P65 in the colon tissue without significant changes of p65 expression,and these changes were SA dose-dependent.Treatment with ML385 obviously attenuated the effect of high-dose SA for improving UC in the mouse models.Conclusion SA can improve UC-like enteritis in mice possibly by activating the Nrf2 pathway and inhibiting the NF-κB pathway in the colon tissue.
10.Sanguinarine induces ferroptosis of colorectal cancer cells by upregulating STUB1 and downregulating GPX4
Yinliang ZHANG ; Zetan LUO ; Rui ZHAO ; Na ZHAO ; Zhidong XU ; Di AO ; Guyi CONG ; Xinyu LIU ; Hailun ZHENG
Journal of Southern Medical University 2024;44(8):1537-1544
Objective To investigate the effect of sanguinarine(SAN)on proliferation and ferroptosis of colorectal cancer cells.Methods SW620 and HCT-116 cells treated with different concentrations of SAN were examined for cell viability changes using CCK8 assay to determine the IC50 of SAN in the two cells.The inhibitory effects of SAN on proliferation,invasion and migration of the cells were evaluated using colony-forming assay and Transwell assays.ROS production in the treated cells was analyzed with flow cytometry,and lipid peroxide production was assessed by detecting malondialdehyde(MDA)level.Glutathione(GSH)levels in the cells were detected,and Western blotting was used to detect the expressions of ferroptosis-related proteins STUB1 and GPX4.Results SAN significantly inhibited the proliferation,invasion and migration of SW620 and HCT-116 cells.SAN treatment significantly promoted ROS production,increased intracellular MDA level,and lowered GSH level in the two cells(P<0.05).Western blotting showed that SAN significantly upregulated the expression of STUB1 and down-regulated the expression of its downstream protein GPX4(P<0.05).Conclusion SAN induces ferroptosis in colorectal cancer cells by regulating STUB1/GPX4,which may serve as a new therapeutic target for colorectal cancer.


Result Analysis
Print
Save
E-mail