1.Plasma miRNA testing in the differential diagnosis of very early-stage hepatocellular carcinoma: a multicenter real-world study
Jie HU ; Ying XU ; Ao HUANG ; Lei YU ; Zheng WANG ; Xiaoying WANG ; Xinrong YANG ; Zhenbin DING ; Qinghai YE ; Yinghong SHI ; Shuangjian QIU ; Huichuan SUN ; Qiang GAO ; Jia FAN ; Jian ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):350-354
Objective To explore the application of plasma 7 microRNA (miR7) testing in the differential diagnosis of very early-stage hepatocellular carcinoma (HCC). Methods This study is a multicenter real-world study. Patients with single hepatic lesion (maximum diameter≤2 cm) who underwent plasma miR7 testing at Zhongshan Hospital, Fudan University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Anhui Provincial Hospital, and Peking University People’s Hospital between January 2019 and December 2024 were retrospectively enrolled. Patients were divided into very early-stage HCC group and non-HCC group, and the clinical pathological characteristics of the two groups were compared. The value of plasma miR7 levels, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) in the differential diagnosis of very early-stage HCC was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). In patients with both negative AFP and DCP (AFP<20 ng/mL, DCP<40 mAU/mL), the diagnostic value of plasma miR7 for very early-stage HCC was analyzed. Results A total of 64 528 patients from 4 hospitals underwent miR7 testing, and 1 682 were finally included, of which 1 073 were diagnosed with very early-stage HCC and 609 were diagnosed with non-HCC. The positive rate of miR7 in HCC patients was significantly higher than that in non-HCC patients (67.9% vs 24.3%, P<0.001). ROC curves showed that the AUCs for miR7, AFP, and DCP in distinguishing HCC patients from the non-HCC individuals were 0.718, 0.682, and 0.642, respectively. The sensitivities were 67.85%, 43.71%, and 44.45%, and the specificities were 75.70%, 92.78%, and 83.91%, respectively. The pairwise comparison of AUCs showed that the diagnostic efficacy of plasma miR7 detection was significantly better than that of AFP or DCP (P<0.05). Although its specificity was slightly lower than AFP and DCP, the sensitivity was significantly higher. Among patients negative for both AFP and DCP, miR7 maintained an AUC of 0.728 for diagnosing very early-stage HCC, with 67.82% sensitivity and 77.73% specificity. Conclusions Plasma miR7 testing is a potential molecular marker with high sensitivity and specificity for the differential diagnosis of small hepatic nodules. In patients with very early-stage HCC lacking effective molecular markers (negative for both AFP and DCP), miR7 can serve as a novel and effective molecular marker to assist diagnosis.
2.Research advance on the role of gut microbiota and its metabolites in juvenile idiopathic arthritis.
Ao-Hui PENG ; You-Jia CHEN ; Jin-Xuan GU ; Zhi-Gang JIN ; Xu-Bo QIAN
Acta Physiologica Sinica 2025;77(3):587-601
Juvenile idiopathic arthritis (JIA) is the most common condition of chronic rheumatic disease in children. JIA is an autoimmune or autoinflammatory disease, with unclear mechanism and limited treatment efficacy. Recent studies have found a number of alterations in gut microbiota and its metabolites in children with JIA, which are related to the development and progression of JIA. This review focuses on the influence of the gut microbiota and its metabolites on immune function and the intestinal mucosal barrier and discuss the key role of the gut-joint axis in the pathogenesis of JIA and emerging treatment methods based on gut microbiota and its metabolites. This review could help elucidate the pathogenesis of JIA and identify the potential therapeutic targets for the prevention and treatment of JIA.
Humans
;
Arthritis, Juvenile/physiopathology*
;
Gastrointestinal Microbiome/physiology*
;
Child
;
Intestinal Mucosa
3.NINJ1 impairs the anti-inflammatory function of hUC-MSCs with synergistic IFN-γ and TNF-α stimulation.
Wang HU ; Guomei YANG ; Luoquan AO ; Peixin SHEN ; Mengwei YAO ; Yuchuan YUAN ; Jiaoyue LONG ; Zhan LI ; Xiang XU
Chinese Journal of Traumatology 2025;28(4):276-287
PURPOSE:
To investigate the regulatory role of nerve injury-induced protein 1 (NINJ1) in the anti-inflammatory function of human umbilical cord mesenchymal stem cells (hUC-MSCs) co-stimulated by interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α).
METHODS:
hUC-MSCs were expanded in vitro using standard protocols, with stem cell characteristics confirmed by flow cytometry and multilineage differentiation assays. The immunomodulatory properties and cellular activity of cytokine-co-pretreated hUC-MSCs were systematically evaluated via quantitative reverse transcription RT-qPCR, lymphocyte proliferation suppression assays, and Cell Counting Kit-8 viability tests. Transcriptome sequencing, Western blotting and small interfering RNA interference were integrated to analyze the regulatory mechanisms of NINJ1 expression. Functional roles of NINJ1 in pretreated hUC-MSCs were elucidated through gene silencing combined with lactate dehydrogenase release assays, Annexin V/Propidium Iodide apoptosis analysis, macrophage co-culture models, and cytokine Enzyme-Linked Immunosorbent Assay. Therapeutic efficacy was validated in a cecal ligation and puncture-induced septic mouse model: 80 mice were randomly allocated into 4 experimental groups (n=20/group): sham group (laparotomy without cecal ligation); phosphate-buffered saline-treated group (cecal ligation and puncture (CLP) + 0.1 mL phosphate-buffered saline); hUC-MSCs (small interfering RNA (siRNA)-interferon-gamma and tumor necrosis factor-alpha co-stimulation (IT))-treated group (CLP + hUC-MSCs transfected with scrambled siRNA); and hUC-MSCs (siNINJ1-IT)-treated group (CLP + hUC-MSCs with NINJ1-targeting siRNA).
RESULTS:
hUC-MSCs demonstrated compliance with International Society for Cellular Therapy criteria, confirming their stem cell identity. IFN-γ/TNF-α co-pretreatment enhanced the immunosuppressive capacity of hUC-MSCs, accompanied by the reduction of cellular viability, while concurrently upregulating pro-inflammatory cytokines such as interleukin-6 and interleukin-1β. This co-stimulation significantly elevated NINJ1 expression in hUC-MSCs, whereas genetic silencing of NINJ1 effectively suppressed pro-inflammatory cytokine production and attenuated damage-associated molecular patterns release through inhibition of programmed plasma membrane rupture. Furthermore, the NINJ1 interference potentiated the ability of cytokine-pretreated hUC-MSCs to suppress LPS-induced pro-inflammatory responses in RAW264.7 macrophages. In cecal ligation and puncture-induced sepsis model, NINJ1-silenced hUC-MSCs exhibited enhanced therapeutic efficacy, manifested by reduced systemic inflammation and multi-organ damage.
CONCLUSION
Our findings shed new light on the immunomodulatory functions of cytokine-primed MSCs, offering groundbreaking insights for developing MSC-based therapies against inflammatory diseases via interfering the expression of NINJ1.
Mesenchymal Stem Cells/drug effects*
;
Animals
;
Interferon-gamma/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Humans
;
Mice
;
Umbilical Cord/cytology*
;
Cells, Cultured
;
Apoptosis
;
Male
4.Arthroscopic tissue engineering scaffold repair for cartilage injuries.
Zhenlong LIU ; Zhenchen HOU ; Xiaoqing HU ; Shuang REN ; Qinwei GUO ; Yan XU ; Xi GONG ; Yingfang AO
Journal of Peking University(Health Sciences) 2025;57(2):384-387
OBJECTIVE:
To standardize the operative procedure for tissue-engineered cartilage repair, by demonstrating surgical technique of arthroscopic implantation of decalcified cortex-cancellous bone scaffolds, and summarizing the surgical experience of the sports medicine department team at Peking University Third Hospital.
METHODS:
This article elaborates on surgical techniques and skills, focusing on the unabridged implantation technology and surgical procedure of decalcified cortex-cancellous bone scaffolds under arthroscopy: First, the patient was placed in the supine position. After anesthesia had been established, the surgeon established an arthroscope and explored the damaged area under the scope. After confirming the size and location of the injury site, the surgeon cleaned the damaged cartilage, and also trimmed the edges of the cartilage to ensure that the cut surface was smooth and stable. the surgeon performed the micro-fracture surgery in the area of cartilage injury, and then measured the size of the injured area under the scope. Next, the surgeon manually trimmed the tissue-engineered scaffold based on the measurements taken under the arthroscope, and then directly implanted the scaffold using a sleeve. A honeycomb-shaped fixator was used to implant absorbable nails to fix the scaffold. After the scaffold was installed, the knee was repeatedly flexed and extended for 10-20 times to ensure stability and range of motion. Finally, the arthroscope was withdrawn and the wound was closed.
RESULTS:
Decalcified cortex-cancellous bone scaffolds possessed unparalleled advantages over synthetic materials in terms of morphology and biomechanics. The cancellous bone part of the scaffold provided a three-dimensional, porous space for cell growth, while the cortical bone part offered the necessary mechanical strength. The surgery was performed entirely under arthroscopy to minimize invasiveness to the patient. Absorbable pins were used for fixation to ensure the stability of the scaffold. This technique could effectively improve the prognosis of the patients with cartilage injuries and standardized the surgical procedures for arthroscopic tissue-engineered scaffold operations in the patients with cartilage damage.
CONCLUSION
With the standard arthroscopic tissue-engineered scaffold repair technique, it is possible to successfully repair damaged cartilage, alleviate symptoms in the short term, and provide a more ideal long-term prognosis. The author and their team explain the surgical procedures for tissue-engineered scaffolds under arthroscopy, with the aim of guiding future clinical practice.
Tissue Engineering/methods*
;
Humans
;
Tissue Scaffolds
;
Arthroscopy/methods*
;
Cartilage, Articular/surgery*
5.Ziwuliuzhu acupuncture modulates Glu/GABA‑Gln metabolic loop abnormalities in insomniac rats.
Jiarong XU ; Ao HUANG ; Zhikai DING ; Yu BAO ; Canghuan ZHAO ; Wenzhi CAI
Journal of Southern Medical University 2025;45(8):1616-1624
OBJECTIVES:
To investigate the therapeutic effect of Ziwuliuzhu acupuncture in a rat model of insomnia and its regulatory effect on the glutamic acid (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop.
METHODS:
Forty male SD rats were randomly assigned to control group, model group, Najia group and Nazi group (n=10). In the latter 3 groups, rat models of insomnia were established by intraperitoneal injections of p-chlorophenylalanine and verified using a sodium pentobarbital-induced sleep test. After modeling, the rats in Najia and Nazi groups received acupuncture for 7 days at specifically chosen sets of acupoints based on the Ziwuliuzhu rationale in traditional Chinese medicine. Pathological changes in the hypothalamic tissue of the rats were examined with HE staining, and the levels of Glu and GABA in the hypothalamus were determined with high-performance liquid chromatography (HPLC)-mass spectrometry (MS)/MS. Immunohistochemistry was used to detect the expressions of GABAA receptors (GABAARs) in the hypothalamus, and the expression levels of glutamate decarboxylase (GAD65/67) and glutamine synthetase (GS) were determined with Western blotting.
RESULTS:
Compared with the model group, the rats in Najia and Nazi groups exhibited decreased Glu levels and GABAA receptor expression and increased GABA levels with a decreased Glu/GABA ratio in the hypothalamus. Ziwuliuzhu acupuncture significantly increased the protein expressions of GAD65 and GAD67 and lowered the expression of GS in the hypothalamus in the rat models of insomnia.
CONCLUSIONS
Ziwuliuzhu acupuncture produces sedative and hypnotic effects in rat models of insomnia possibly by regulating Glu and GABA-Gln metabolism to restore the excitatory/inhibitory balance between Glu and GABA.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep Initiation and Maintenance Disorders/therapy*
;
Glutamine/metabolism*
;
Glutamic Acid/metabolism*
;
Acupuncture Therapy
;
Hypothalamus/metabolism*
;
Receptors, GABA-A/metabolism*
;
Acupuncture Points
6.Unlocking the dual role of autophagy: A new strategy for treating lung cancer.
Fei TANG ; Jing-Nan ZHANG ; Xiao-Lan ZHAO ; Li-Yue XU ; Hui AO ; Cheng PENG
Journal of Pharmaceutical Analysis 2025;15(3):101098-101098
Lung cancer exhibits the highest incidence and mortality rates among cancers globally, with a five-year overall survival rate alarmingly below 20%. Targeting autophagy, though a controversial therapeutic strategy, is extensively employed in clinical practice. Current research is actively pursuing various therapeutic strategies using small molecules to exploit the dual function of autophagy. Nevertheless, the pivotal question of enhancing or inhibiting autophagy in cancer therapy merits further attention. This review aims to provide a comprehensive overview of the mechanisms of autophagy in lung cancer. It also explores recent advances in targeting cytotoxic autophagy and inhibiting protective autophagy with small molecules to induce cell death in lung cancer cells. Notably, most autophagy-targeting drugs, primarily natural small molecules, have demonstrated that activating cytotoxic autophagy effectively induces cell death in lung cancer, as opposed to inhibiting protective autophagy. These insights contribute to identifying druggable targets and drug candidates for potential autophagy-related lung cancer therapies, offering promising approaches to combat this disease.
7.Discovery of toad-derived peptide analogue targeting ARF6 to induce immunogenic cell death for immunotherapy of hepatocellular carcinoma.
Dihui XU ; Xiang LV ; Meng YU ; Ao TAN ; Jiaojiao WANG ; Xinyi TANG ; Mengyuan LI ; Wenyuan WU ; Yuyu ZHU ; Jing ZHOU ; Hongyue MA
Journal of Pharmaceutical Analysis 2025;15(3):101038-101038
Image 1.
8.Short-term Effects of Fine Particulate Matter and its Constituents on Acute Exacerbations of Chronic Bronchitis: A Time-stratified Case-crossover Study.
Jing Wei ZHANG ; Jian ZHANG ; Peng Fei LI ; Yan Dan XU ; Xue Song ZHOU ; Xiu Li TANG ; Jia QIU ; Zhong Ao DING ; Ming Jia XU ; Chong Jian WANG
Biomedical and Environmental Sciences 2025;38(3):389-393
9.Effect of tibial nerve injury on treatment of tibial single-plane osteotomy and bone transport
Ao XU ; Bin WANG ; Jun FANG ; Cuiwei BAI ; Zichen LYU ; Kang CHENG ; Yongxin ZHENG ; Hongtao WANG
Chinese Journal of Tissue Engineering Research 2024;28(12):1925-1930
BACKGROUND:Peripheral nerves play an important role in bone metabolism.In clinical practice,the specific impact of nerve injury on bone transport technology needs further study. OBJECTIVE:To investigate the effect of tibial nerve injury on the treatment of tibial slip by single-plane osteotomy. METHODS:Thirty-two patients with tibial bone defects admitted to Tangshan Second Hospital from May 2011 to June 2022 were selected.According to the presence or absence of tibial nerve injury,patients were divided into the tibial nerve injury group(n=16)and the non-tibial nerve injury group(n=16).Both groups were treated with single-plane osteotomy and bone slip.After treatment,the patients were followed up to collect the mineralization zone healing index,external fixation index,docking point healing and needle infection.After the removal of external fixation,the bone healing and functional evaluation were evaluated by a classification of the Association for the Study and Application of the Method of Ilizarov(ASAMI). RESULTS AND CONCLUSION:(1)All 32 patients were followed up for(25.28±4.79)months.There were no significant differences in bone healing time,external fixation time,healing index and external fixation index between the two groups(P>0.05).Needle infection occurred in two cases of the tibial nerve injury group and one case of the non-tibial nerve injury group,all of which were PALEY I,and there was no significant difference between the two groups(P>0.05).The non-union rate of the occlusal end of the tibial nerve injury group was 31%,and that of the non-tibial nerve injury group was 13%;there was no statistical difference between the two groups(P>0.05).The excellent and good rate of ASAMI bone healing score in the two groups was 100%;the excellent and good rate of limb score was 81%in the tibial nerve injury group and 94%in the non-tibial nerve injury group;there was no statistical difference between the two groups(P>0.05).(2)Our research shows that tibial nerve injury has no significant effect on the mineralization speed,external fixation time,union of the occlusal end,infection of the needle tract,and the quality of bone formation in the mineralized area of the single-plane osteotomy.
10.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases

Result Analysis
Print
Save
E-mail