1.A novel fully human LAG-3 monoclonal antibody LBL-007 combined with PD-1 antibody inhibits proliferation, migration and invasion of tumor cells via blocking NF-κB pathway.
Huinan ZHOU ; Jianfei LIU ; Chenglin WU ; Kewei QIN ; Lijun ZHOU
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):398-405
Objective To investigate the effects of LBL-007, a novel fully human lymphocyte activation gene 3 (LAG-3) monoclonal antibody, in combination with programmed cell death protein 1 (PD-1) antibody, on the invasion, migration and proliferation of tumor cells, and to elucidate the underlying mechanisms. Methods Human lymphocyte cells Jurkat were co-cultured with A549 and MGC803 tumor cell lines and treated with the isotype control antibody human IgG, LBL-007, anti-PD-1 antibody BE0188, or tumor necrosis factor-alpha (TNF-α, the NF-κB signaling pathway agonist). Tumor cell proliferation was assessed using a colony formation assay; invasion was measured by TranswellTM assay; migration was evaluated using a wound healing assay. Western blotting was employed to determine the expression levels of NF-κB pathway-related proteins: IκB inhibitor kinase alpha (Ikkα), phosphorylated Ikkα (p-IKKα), NF-κB subunit p65, phosphorylated p65 (p-p65), NF-κB Inhibitor Alpha (IκBα), phosphorylated IκBα (p-IκBα), matrix metalloproteinase 9 (MMP9), and MMP2. Results Compared with the control and IgG isotype groups, LBL-007 and BE0188 significantly reduced tumor cell proliferation, invasion, and migration. They also decreased the phosphorylation of p-IKKα, p-p65 and p-IκBα, and the expression of MMP9 and MMP2 of tumor cells in the co-culture system. The combined treatment of LBL-007 and BE0188 enhanced inhibitory effects. Treatment with the NF-κB signaling pathway agonist TNF-α reversed the suppressive effects of LBL-007 and BE0188 on tumor cell proliferation, invasion, migration, and NF-κB signaling. Conclusion LBL-007 and anti-PD-1 antibody synergistically inhibit the invasion, migration, and proliferation of A549 and MGC803 tumor cells by blocking the NF-κB signaling pathway.
Humans
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Neoplasm Invasiveness
;
Antibodies, Monoclonal/pharmacology*
;
Programmed Cell Death 1 Receptor/antagonists & inhibitors*
;
Cell Line, Tumor
;
Antigens, CD/immunology*
;
Lymphocyte Activation Gene 3 Protein
;
A549 Cells
;
I-kappa B Kinase/metabolism*
;
Jurkat Cells
;
Matrix Metalloproteinase 9/metabolism*
2.Effects of Vitamin D Receptor on Mucosal Barrier Proteins in Colon Cells under Hypoxic Environment.
Zheng WANG ; Hong YANG ; Meng JIN ; Hui Min ZHANG ; Xuan Fu CHEN ; Mei Xu WU ; Ming Yue GUO ; Chang Zhi HUANG ; Jia Ming QIAN
Acta Academiae Medicinae Sinicae 2019;41(4):506-511
To investigate the expressions of mucosal barrier proteins in colon cell line DLD-1 under hypoxic environment and its mechanism. Methods After DLD-1 cells were treated separately with hypoxia(l% O),vitamin D(100 nmol/L),or vitamin D plus hypoxia for 48 hours,the expressions of vitamin D receptor(VDR),tight junction proteins zonula occludens-1(ZO-1),occludin,Claudin-1,and adherent junction protein(E-cadherin)were determined by Western blot.Stable VDR knock-down(Sh-VDR)DLD-1 cell line and control DLD-1 cell line were established by lentivirus package technology and the protein expressions after hypoxia treatment were detected. Results Compared with control group,the expressions of occludin,Claudin-1,and VDR increased significantly after hypoxia treatment(all <0.001).In addition to the protein expressions of occludin,Claudin-1 and VDR,the expressions of ZO-1 and E-cadherin were also obviously higher in vitamin D plus hypoxia group than in single vitamin D treatment group(all <0.001).After hypoxia treatment,Sh-VDR cell line showed significantly decreased expressions of ZO-1(<0.001),occludin(<0.05),Claudin-1(<0.01)and E-cadherin(<0.001)when compared with untreated Sh-VDR cell line. Conclusion VDR acts as a regulator for the expressions of intestinal mucosal barrier proteins under hypoxia environment in DLD-1 colon cell line,indicating that VDR pathway may be another important protective mechanism for gut barrier in low-oxygen environment.
Antigens, CD
;
metabolism
;
Cadherins
;
metabolism
;
Cell Hypoxia
;
Cell Line
;
Claudin-1
;
metabolism
;
Colon
;
cytology
;
Humans
;
Occludin
;
metabolism
;
Receptors, Calcitriol
;
metabolism
;
Tight Junctions
;
Vitamin D
;
pharmacology
;
Zonula Occludens-1 Protein
;
metabolism
3.Progress on anti-tumor molecular mechanisms of dihydroartemisinin.
Peng CAO ; Dongjin LENG ; Ying LI ; Ziwei ZHANG ; Lei LIU ; Xiaoyan LI
Journal of Zhejiang University. Medical sciences 2016;45(5):501-507
Artemisinin is an anti-malarial drug with poor water solubility and oral absorption; so a variety of derivatives based on the parent nucleus have been developed. Compared with artemisinin, dihydroartemisinin (DHA) has a stronger anti-malaria activity, and has the advantages of high metabolic rate and better water solubility. Recent studies have discovered that DHA has a good inhibitory effect on tumor cells, which is closely related to the peroxide bridge in its molecular structure. Since tumor cells need more Fethan normal cells, there are a large number of transferrin receptors on the tumor cell membrane. DHA can break the peroxide bridge in the presence of Fe, and the free radicals generated can play its lethal effect on tumor cells. In addition, DHA can promote endocytosis of transferrin receptor, and thus prevent cancer cells from taking Fefrom microenvironment. This article reviews the anti-tumor molecular mechanism of DHA, including accelerating oxidative damage, inducing apoptosis, inhibiting the growth, proliferation and invasion of tumor cells, reversing tumor multidrug resistance.
Antigens, CD
;
drug effects
;
metabolism
;
Antineoplastic Agents
;
pharmacokinetics
;
pharmacology
;
Apoptosis
;
drug effects
;
Artemisinins
;
metabolism
;
pharmacokinetics
;
pharmacology
;
Endocytosis
;
drug effects
;
Free Radicals
;
chemical synthesis
;
pharmacology
;
Humans
;
Iron
;
metabolism
;
Neoplasms
;
drug therapy
;
physiopathology
;
Oxidative Stress
;
drug effects
;
Receptors, Transferrin
;
drug effects
;
metabolism
4.Inducing Effect of Modified Cytokine Cocktail on Dendritic Cells.
Wei XU ; Bao-Long WANG ; Qiong HUANG ; Zhi-Feng ZHOU ; Peng LUO
Journal of Experimental Hematology 2016;24(1):197-204
OBJECTIVETo investigate the inducing effect of 'modified' cytokine cocktail on the dendritic cell maturation and migration capability.
METHODSPBMNC were isolated from human peripheral blood stem cell (PBSC) by using density gradient centrifugation, the immature DC (imDC) were induced by using GM-CSF and IL-4 in vitro. Total A549 RNA was transfected into imDC by using electroporation, which was stimulated to matuation by the "gold standard" cytokine cocktail and "modified" cytokine cocktail, respectively. The expression of DC surface markers (CD11c, HLA-DR, CD80, CD83 and CD86) and chemokine receptor (CCR5, CCR7 and CXCR4) were detected by flow cytometry; the mRNA expression levels of DC chemokine receptor (CCR2, CCR5, CCR7, CXCR3 and CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12) were detected by RT-PCR.
RESULTSAs compared with "gold standard cytokine cocktail", the "modified" cytokine cocktail-induced DC expressed higher levels of surface markers (CD11c, HLA-DR, CD80, CD83 and CD86), chemokine receptors (CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12).
CONCLUSIONThe "modified" cytokine cocktail can more effectively induce the DC maturation, enhace the migratory capability of DC and more generate the immunostimulatory DC, when compared with the "gold standard" cytokine cocktail effect.
Antigens, CD ; metabolism ; Cell Culture Techniques ; Cell Differentiation ; Chemokines ; metabolism ; Cytokines ; pharmacology ; Dendritic Cells ; cytology ; drug effects ; Flow Cytometry ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Humans ; Interleukin-4 ; pharmacology ; Receptors, Chemokine ; metabolism
5.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
6.Qingre quyu granule stabilizes plaques through inhibiting the expression of tenascin-C in patients with severe carotid stenosis.
Yi WANG ; Wen-li CHENG ; Yong WANG ; Jing-pin PENG ; Jie YUAN ; Li CHEN ; Lin PAN ; Hong LI ; Jian GUO
Chinese journal of integrative medicine 2015;21(5):339-345
OBJECTIVETo investigate the therapeutic effects of Qingre Quyu Granule (QQG) on the patients with severe carotid stenosis, and to explore the mechanism of it.
METHODSNinety-six patients with severe carotid stenosis were enrolled in the study and were classified into a QQG group (n=48) and a control group (n=48) randomly using consecutively numbered envelopes. The patients in the QQG group were given QQG and Western medicine, those in the control group were given Western medicine merely, the course of treatment was 16 weeks. All patients went through endarterectomy after treatment. Plaques were subjected to the analysis of CD3, CD68, soluble intercellular adhesion molecule 1 (ICAM-1), matrix metalloprotease-9 (MMP-9), CD40L, tenascin-C, and collagen content lipid content by immunohistochemistry or polarized light analysis.
RESULTSBy the end of experiment, the expressions of CD3, CD68, ICAM-1, MMP9, CD40L and tenascin-C on the plaques were statistically significant lower in the QQG group compared with the control group(P<0.01). The lipid content of the plaque was also significantly lower in the QQG group compared with the control group (P<0.01). The interstitial collagen in the tissue sections of the plaques was also significantly higher in the QQG group in comparison with the control group (P<0.01).
CONCLUSIONQQG could stabilize carotid artery plaques through inhibiting pro-inflammation factors and restraining the tenascin-C and MMP9 pathway.
Aged ; Antigens, CD ; metabolism ; Antigens, Differentiation, Myelomonocytic ; metabolism ; CD3 Complex ; metabolism ; CD40 Ligand ; metabolism ; Carotid Arteries ; metabolism ; pathology ; Carotid Stenosis ; blood ; complications ; drug therapy ; Collagen ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Humans ; Immunohistochemistry ; Inflammation ; complications ; pathology ; Intercellular Adhesion Molecule-1 ; metabolism ; Lipids ; blood ; Male ; Matrix Metalloproteinase 9 ; metabolism ; Plaque, Atherosclerotic ; blood ; complications ; drug therapy ; Tenascin ; metabolism
7.Reversal of stemness in multidrug-resistant hepatocellular carcinoma cells by SIS3.
Wei YAN ; Ting WEN ; Suqiong LIN ; Zhongcai LIU ; Wenchao YANG ; Guoyang WU ; Email: WUGUOYANG_MAIL@ALIYUN.COM.
Chinese Journal of Oncology 2015;37(10):731-735
OBJECTIVETo investigate whether SIS3, a specific inhibitor of Smad3 phosphorylation, can reverse the stemness of multidrug-resistant(MDR) hepatocellular carcinoma cells.
METHODSMDR HCC Huh7.5.1/ADM cell lines were developed by exposing parental cells to stepwise increasing concentrations of ADM. CCK-8 assay was used to determine the cellular sensitivity of various anticancer drugs. Flow cytometry (FCM) was used to analyze the expression level of cancer stem cell marker CD133. Clone formation assay and mouse subcutaneous xenograft tumors were used to investigate the tumorigenicity in vitro and in vivo. Western blotting (WB) was used to analyze the changes of expressions of CD133, Smad3, Bcl-2, Bax and p-Smad3 in different conditions.
RESULTSADM treatment of HCC cells in vitro resulted in a development of subline, Huh7.5.1/ADM cells, with CSC phenotypes: stable MDR phenotype (besides ADMc Huh7.5.1/ADM cells were also more resistant to some other anticancer drugs including VCR, MMC and CTX ) (IC50: 0.215 ± 0.018 vs. 0.123 ± 0.004, 0.145 ± 0.009 vs. 0.014 ± 0.002, 1.021 ± 0.119 vs. 0.071 ± 0.006, 27.007 ± 1.606 vs. 1.919 ± 0.032) (unit: µg/ml) (P<0.05). Huh7.5.1/ADM cells enriched the cancer stem-like cell fraction (CD133-positive subpopulation) (76.06 ± 2.948% vs. 25.38 ± 4.349%) (P<0.05), had stronger tumorigenicity in vivo and colony formation ability, and activated the Smad3 activity. Inhibition of Smad3 activity by SIS3 decreased stemness of the Huh7.5.1/ADM cells: CD133-positive subpopulation (48.49 ± 2.304% vs. 76.06 ± 2.948%) (P<0.05); ADM IC50: (0.112 ± 0.019 vs. 0.215 ± 0.018), VCR IC50 (0.065 ± 0.013 vs. 0.145±0.009), MMC IC₅₀ (0.749 ± 0.121 vs. 1.021 ± 0.119), CTX IC50 (10.576 ± 1.248 vs. 27.007 ± 1.606) (unit: µg/ml) (P<0.05), and decreased tumorigenicity and colony formation ability.
CONCLUSIONSIS3 as a specific inhibitor of Smad3 signal is involved in the stemness of multidrug resistant hepatocellular carcinoma cells.
AC133 Antigen ; Animals ; Antibiotics, Antineoplastic ; pharmacology ; Antigens, CD ; metabolism ; Carcinoma, Hepatocellular ; drug therapy ; metabolism ; pathology ; Doxorubicin ; pharmacology ; Drug Resistance, Neoplasm ; Glycoproteins ; metabolism ; Heterografts ; Humans ; Isoquinolines ; pharmacology ; Liver Neoplasms ; drug therapy ; metabolism ; pathology ; Mice ; Neoplasm Proteins ; metabolism ; Neoplastic Stem Cells ; drug effects ; Peptides ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Pyridines ; pharmacology ; Pyrroles ; pharmacology ; Smad3 Protein ; antagonists & inhibitors ; metabolism ; Tumor Stem Cell Assay ; bcl-2-Associated X Protein ; metabolism
8.Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro.
Xiao-li LIU ; Jing SONG ; Ke-jian LIU ; Wen-peng WANG ; Chang XU ; Yu-zeng ZHANG ; Yun LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):712-715
Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
Animals
;
Antigens, CD
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Feedback, Physiological
;
Fetus
;
Fluorides
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Gene Expression Regulation, Developmental
;
Osteoblasts
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteogenesis
;
drug effects
;
genetics
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Receptor Activator of Nuclear Factor-kappa B
;
genetics
;
metabolism
;
Receptors, Cell Surface
;
genetics
;
metabolism
;
Semaphorins
;
genetics
;
metabolism
;
Signal Transduction
;
Transforming Growth Factor beta1
;
genetics
;
metabolism
;
rho-Associated Kinases
;
genetics
;
metabolism
;
rhoA GTP-Binding Protein
;
genetics
;
metabolism
9.Role of adult resident renal progenitor cells in tubular repair after acute kidney injury.
Hui-ling WANG ; E-mail: VIOLLLA@163.COM. ; Nan-mei LIU ; Rui LI ;
Journal of Integrative Medicine 2014;12(6):469-475
Acute kidney injury is a serious global health problem and determinant of morbidity and mortality. Recent advancements in the field of stem cell research raise hopes for stem cell-based regenerative approaches to treat acute kidney diseases. In this review, the authors summarized the latest research advances of the adult resident renal progenitor cells (ARPCs) on kidney repair, the role of ARPCs on tubular regeneration after acute kidney injury, the current understanding of the mechanisms related to ARPC activation and modulation, as well as the challenges that remain to be faced.
Acute Kidney Injury
;
physiopathology
;
Antigens, CD
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Kidney
;
physiopathology
;
Kidney Tubules
;
physiopathology
;
Receptors, CXCR
;
metabolism
;
Regeneration
;
physiology
;
Reperfusion Injury
;
physiopathology
;
Stem Cells
;
physiology
10.Relationship between CD133 and chemoresistance in human gastric cancer and its associated mechanism.
Youlong ZHU ; Bojian JIANG ; Cheng CAI ; Shoulian WANG ; Jugang WU ; Jiwei YU
Chinese Journal of Gastrointestinal Surgery 2014;17(2):168-174
OBJECTIVETo explore the relationship between CD133(+) subsets cells in human gastric cancer (GC) and molecules of drug resistance and their sensitivity to 5-FU.
METHODSThree gastric cancer cell lines therein KATO-III(, SGC7901 and MKN45 were sorted by immunomagnetic beads cell sorting method. Then above cell lines were further divided into un-sorted GC cells, CD133(+) subgroup and CD133(-) subgroup. The expressions of CD133, P-gp, Bax and Bcl-2 were determined by RT-PCR, Western blot and immunoflurescence. Meanwhile, the sensitivity to 5-FU of three subgroups was detected by CCK-8 Kit. The apoptosis induced by 5-FU in three subgroups was determined by Hoechst 33258.
RESULTSExpressions of CD133 in three CD133(+) subgroups were significantly higher than those in un-sorted GC cells and CD133(-) subgroup (all P<0.05). Expressions of P-gp and Bcl-2 in the three GC cell lines were different (all P<0.05). There were significant differences of expressions of P-gp, Bcl-2 and Bax among CD133(+) cells, un-sorted GC cells and CD133(-) cells (all P<0.05). CCK-8 detection showed that CD133(-) subgroup of MKN45 GC cell line was more sensitive than CD133(+) cells to 5-FU (P<0.05). Hoechst 33258 staining showed that there were more apoptotic cells in CD133(-) subgroup as compared to other two subgroups, and the least apoptotic cells were observed in CD133(+) subgroup of MKN45 GC cell line (P<0.05). CD133 sirna was transfected into MKN45 GC cell line and could down-regulate the expressions of CD133, P-gp, Bcl-2 and p-Akt, while the expression of Bax increased (all P<0.05).
CONCLUSIONSCD133 may contribute to the resistance of GC cells to chemotherapy drug through P-gp, Bcl-2 and Bax. PI3K/Akt signal pathway may be involved in this process.
AC133 Antigen ; ATP-Binding Cassette, Sub-Family B, Member 1 ; Antigens, CD ; metabolism ; Antineoplastic Agents ; pharmacology ; Apoptosis ; Cell Line, Tumor ; Drug Resistance, Neoplasm ; Fluorouracil ; Glycoproteins ; metabolism ; Humans ; Peptides ; metabolism ; Phosphatidylinositol 3-Kinases ; Proto-Oncogene Proteins c-akt ; RNA, Small Interfering ; Stomach Neoplasms ; drug therapy ; metabolism ; pathology ; bcl-2-Associated X Protein

Result Analysis
Print
Save
E-mail