1.Efficacy and safety of perampanel add-on therapy in children with epilepsy of genetic etiology.
Chinese Journal of Contemporary Pediatrics 2025;27(2):171-175
OBJECTIVES:
To investigate the efficacy and safety of perampanel (PER) add-on therapy in children with epilepsy of genetic etiology.
METHODS:
A retrospective analysis was conducted on the clinical data of 53 children who attended the Department of Neurology, Wuhan Children's Hospital, from November 2020 to April 2023. All children received PER add-on therapy and were diagnosed with epilepsy of genetic etiology based on whole-exome sequencing. The primary outcome measure was the proportion of children with a reduction in seizure frequency of ≥50% at month 12 of PER treatment (i.e., response rate), and the secondary outcome measures were response rates at months 3 and 6 of treatment. The influencing factors for the efficacy of PER add-on therapy in the treatment of epilepsy of genetic etiology were analyzed, and adverse events were recorded.
RESULTS:
The median follow-up duration was 13.10 months. After 12 months of follow-up, 42 children were included in the analysis, comprising 25 boys (60%) and 17 girls (40%). The median initial dose of PER was 1.5 (1.0, 2.0) mg/d, and the median maintenance dose was 4.0 (3.0, 8.0) mg/d. The response rates to PER at months 3, 6, and 12 of treatment were 61% (30/49), 54% (25/46), and 48% (20/42), respectively. No significant difference in the efficacy of PER was observed between children with mutations in genes encoding different protein functions (P>0.05). The most common adverse event reported was fatigue, observed in 3 children (6%).
CONCLUSIONS
PER add-on therapy demonstrates good efficacy and safety in children with epilepsy of genetic etiology. No influencing factors for the efficacy of PER have been identified to date.
Humans
;
Male
;
Female
;
Nitriles
;
Child
;
Pyridones/administration & dosage*
;
Child, Preschool
;
Retrospective Studies
;
Anticonvulsants/administration & dosage*
;
Epilepsy/etiology*
;
Adolescent
;
Infant
;
Drug Therapy, Combination
2.Effect of phenytoin and levetiracetam on busulfan blood concentration in children undergoing hematopoietic stem cell transplantation.
Shi-Xi XU ; Guang-Ting ZENG ; Jing-Yu WANG ; Shu-Lan LIU ; Jing LIU ; Bo-Yan DENG ; Ji-Ming LUO ; Jie LIN ; An-Fa WANG
Chinese Journal of Contemporary Pediatrics 2025;27(11):1378-1383
OBJECTIVES:
To study the effect of prophylactic phenytoin (PHT) or levetiracetam (LEV) on busulfan (BU) blood concentration in children undergoing hematopoietic stem cell transplantation.
METHODS:
Pediatric patients conditioned with BU plus cyclophosphamide and fludarabine at the First People's Hospital of Chenzhou from September 2023 to February 2025 were retrospectively included. Patients were grouped by prophylactic antiepileptic regimen into PHT (n=24) and LEV (n=26). BU blood concentrations at the end of infusion (0 hour) and at 1, 2, and 4 hours post-infusion were compared between groups.
RESULTS:
At 0 hour post-infusion, BU blood concentrations did not differ significantly between groups (P>0.05). At 1, 2, and 4 hours post-infusion, BU blood concentrations were higher in the LEV group than in the PHT group (P<0.05). The area under the concentration-time curve from 0 to ∞ (AUC0-∞) was greater in the LEV group (P<0.001), and the attainment rate of AUC0-∞ was higher in the LEV group than in the PHT group (73% vs 21%, P<0.001). No significant differences were observed between groups in time to hematopoietic engraftment or in the incidence of BU-related adverse drug reactions (P>0.05).
CONCLUSIONS
Compared with PHT, LEV prophylaxis is associated with higher BU blood concentration and a higher AUC0-∞ attainment rate. There is no observed difference in BU efficacy or safety between PHT and LEV.
Humans
;
Levetiracetam/therapeutic use*
;
Busulfan/pharmacokinetics*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Female
;
Child
;
Child, Preschool
;
Phenytoin/pharmacology*
;
Infant
;
Retrospective Studies
;
Anticonvulsants/pharmacology*
;
Adolescent
3.Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.
Yiwei GONG ; Zheng ZHANG ; Yuanzhi YANG ; Shuo ZHANG ; Ruifeng ZHENG ; Xin LI ; Xiaoyun QIU ; Yang ZHENG ; Shuang WANG ; Wenyu LIU ; Fan FEI ; Heming CHENG ; Yi WANG ; Dong ZHOU ; Kejie HUANG ; Zhong CHEN ; Cenglin XU
Neuroscience Bulletin 2025;41(5):790-804
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis. However, it still lacks effective predictors and approaches. Here, a classical model of pharmacoresistant temporal lobe epilepsy (TLE) was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats. Ictal electroencephalograms (EEGs) recorded before phenytoin treatment were analyzed. Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats, a convolutional neural network predictive model was constructed to predict pharmacoresistance, and achieved 78% prediction accuracy. We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power, which was verified in seizure EEGs from pharmacoresistant TLE patients. Prospectively, therapies targeting the subiculum in those predicted as "pharmacoresistant" individual rats significantly reduced the subsequent occurrence of pharmacoresistance. These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model. This may be of translational importance for the precise management of pharmacoresistant TLE.
Epilepsy, Temporal Lobe/diagnosis*
;
Animals
;
Drug Resistant Epilepsy/drug therapy*
;
Electroencephalography/methods*
;
Rats
;
Anticonvulsants/pharmacology*
;
Neural Networks, Computer
;
Male
;
Humans
;
Phenytoin/pharmacology*
;
Adult
;
Disease Models, Animal
;
Female
;
Rats, Sprague-Dawley
;
Young Adult
;
Convolutional Neural Networks
4.Human Cortical Organoids with a Novel SCN2A Variant Exhibit Hyperexcitability and Differential Responses to Anti-Seizure Compounds.
Yuling YANG ; Yang CAI ; Shuyang WANG ; Xiaoling WU ; Zhicheng SHAO ; Xin WANG ; Jing DING
Neuroscience Bulletin 2025;41(11):2010-2024
Mutations in ion channel genes have long been implicated in a spectrum of epilepsy syndromes. However, therapeutic decision-making is relatively complex for epilepsies associated with channelopathy. Therefore, in the present study, we used a patient-derived organoid model with a novel SCN2A mutation (p.E512K) to investigate the potential of utilizing such a model as a platform for preclinical testing of anti-seizure compounds. The electrophysiological properties of the variant Nav1.2 exhibited gain-of-function effects with increased current amplitude and premature activation. Immunofluorescence staining of patient-derived cortical organoids (COs) displayed normal neurodevelopment. Multielectrode array (MEA) recordings of patient-derived COs showed hyperexcitability with increased spiking and remarkable network bursts. Moreover, the application of patient-derived COs for preclinical drug testing using the MEA showed that they exhibit differential responses to various anti-seizure drugs and respond well to carbamazepine. Our results demonstrate that the individualized organoids have the potential to serve as a platform for preclinical pharmacological assessment.
Organoids/physiology*
;
NAV1.2 Voltage-Gated Sodium Channel/genetics*
;
Humans
;
Anticonvulsants/pharmacology*
;
Epilepsy/drug therapy*
;
Mutation
;
Cerebral Cortex/drug effects*
;
Action Potentials/drug effects*
;
Carbamazepine/pharmacology*
5.Analysis of the efficacy and influencing factors of sodium channel blockers in the treatment of focal epilepsy in infants under 6 months of age.
Yu Ping MA ; Jie DENG ; Zheng Ran FU ; Chun Hong CHEN ; Xiao Hui WANG ; Xu WANG ; Jing Wen WENG ; Yan Hua SHEN
Chinese Journal of Pediatrics 2023;61(11):983-988
Objective: To analyze the efficacy and safety of the sodium channel blockers (SCB) antiseizure medication in the treatment of focal epilepsy in infants under 6 months of age. Methods: This was a case series study. Infants with focal epilepsy with onset within 6 months of age and treated with SCB attending the Department of Neurology of Beijing Children's Hospital from June 2016 to April 2022 were collected. The clinical data, auxiliary examinations, SCB application, efficacy, adverse reactions, and prognosis were analyzed retrospectively. Patients were grouped according to type of seizure and epileptic syndrome, age of onset and etiology. Chi square test and Fisher exact test were used to analyze the differences between groups statistically. Results: A total of 118 infants were enrolled, 65 males and 53 females, with an age of epilepsy onset of 56 (4, 114) days. Developmental and epileptic encephalopathy was diagnosed in 60 infants, 39 had self-limited neonatal and (or) infantile epilepsy, and 19 had non-syndromic focal epilepsy. Application of SCB: 106 used oxcarbazepine, 2 used lacosamide, 9 switched from oxcarbazepine to lacosamide or a combination of 2 SCB, and 1 used oxcarbazepine, lacosamide, and lamotrigine successively; oxcarbazepine was the first choice in 46 cases. The age at which SCB was applied was 103 (53, 144) days. The children were followed up for 6 months to 6 years. SCB was effective in 89 cases (75.4%), including 70 cases (59.3%) who achieved seizure freedom. The seizure-free rate was higher in the focal epilepsy only group than in the group with other seizure types (64.4% (65/101) vs. 4/17, χ²=9.99, P<0.05). The responder and seizure-free rates were all higher in the group with the onset age of >3-6 months than the group >1-3 months (84.4% (38/45) vs. 62.5% (20/32), 73.3% (33/45) vs. 46.9% (15/32), χ²=4.85 and 5.58, both P<0.05). With the exception of variants in the PRRT2 gene, those with variants in sodium or potassium channels had higher responder and seizure-free rates than those with variants in other genes(86.2% (25/29) vs. 45.5% (10/22), 62.1% (18/29) vs. 22.7% (5/22), χ²=9.65 and 7.82,both P<0.05). The most common adverse event was transient hyponatremia, which happened in 66 cases (55.9%). There were 9 cases of rash, which subsided in 6 cases after discontinuing oxcarbazepine and switching to lacosamide, and 7 cases of electrocardiogram abnormalities, which improved after withdrawing oxcarbazepine and changing to lacosamide in 1 case. Conclusion: SCB are effective and tolerable in the treatment of focal epilepsy in infants under 6 months of age, with better efficacy in patients with genetic variants of the sodium or potassium channel, focal seizures only, and seizure onset >3-6 months of age.
Child
;
Female
;
Male
;
Infant, Newborn
;
Humans
;
Infant
;
Sodium Channel Blockers/adverse effects*
;
Oxcarbazepine
;
Lacosamide
;
Retrospective Studies
;
Epilepsies, Partial/drug therapy*
;
Seizures
;
Sodium
;
Anticonvulsants/adverse effects*
6.Amino acid metabolism characteristics of Banxia Baizhu Tianma Decoction in realizing drug withdrawal based on transcriptomic analysis.
Xin YANG ; Jia-Yi HE ; Xiang-Xin GUO ; Rong TIAN
China Journal of Chinese Materia Medica 2023;48(9):2512-2521
This study aimed to demonstrate the effect of Banxia Baizhu Tianma Decoction(BBTD) on realizing withdrawal of anti-epileptic drugs and explore the relationship between BBTD and the amino acid metabolism by transcriptomic analysis in the rat model of epilepsy induced by lithium chloride-pilocarpine. The rats with epilepsy were divided into a control group(Ctrl), an epilepsy group(Ep), a BBTD & antiepileptic drug integrative group(BADIG), and an antiepileptic drug withdrawal group(ADWG). The Ctrl and Ep were given ultrapure water by gavage for 12 weeks. The BADIG was given BBTD extract and carbamazepine solution by gavage for 12 weeks. The ADWG was given carbamazepine solution and BBTD extract by gavage for the former 6 weeks, and then only given BBTD extract for the latter 6 weeks. The therapeutic effect was evaluated by behavioral observation, electroencephalogram(EEG), and hippocampal neuronal morphological changes. High-throughput sequencing was used to obtain amino acid metabolism-related differen-tial genes in the hippocampus, and the mRNA expression in the hippocampus of each group was verified by real-time quantitative polymerase chain reaction(RT-qPCR). The hub genes were screened out through protein-protein interaction(PPI) network, and Gene Ontology(GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed. Two ceRNA networks, namely circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA, were constructed for ADWG vs BADIG. The experimental results showed that compared with those in Ep, rats in ADWG were significantly improved in the behavioral observation, EEG, and hippocampal neuronal impairment. Thirty-four amino acid metabolism-related differential genes were obtained by transcriptomic analysis, and the sequencing results were confirmed by RT-qPCR. Eight hub genes were obtained through PPI network, involving several biological processes, molecular functions, and signal pathways related to amino acid metabolism. Finally, the circRNA-miRNA-mRNA ternary transcription network of 17 circRNA, 5 miRNA, and 2 mRNA, and a lncRNA-miRNA-mRNA ternary network of 10 lncRNA, 5 miRNA, and 2 mRNA were constructed in ADWG vs BADIG. In conclusion, BBTD can effectively achieve the withdrawal of antiepileptic drugs, which may be related to the transcriptomic regulation of amino acid metabolism.
Rats
;
Animals
;
RNA, Circular/genetics*
;
Transcriptome
;
RNA, Long Noncoding/genetics*
;
Anticonvulsants
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Carbamazepine
;
Amino Acids
;
Gene Regulatory Networks
7.Anti -epileptic effect of 2 -deoxy -D -glucose by activation of miR -194/KATP signaling pathway.
Journal of Central South University(Medical Sciences) 2022;47(8):1099-1107
OBJECTIVES:
Epilepsy is a syndrome of central nervous system dysfunction caused by many reasons, which is mainly characterized by abnormal discharge of neurons in the brain. Therefore, finding new targets for epilepsy therapy has always been the focus and hotspot in neurological research field. Studies have found that 2-deoxy-D-glucose (2-DG) exerts anti-epileptic effect by up-regulation of KATP channel subunit Kir6.1, Kir6.2 mRNA and protein. By using the database of TargetScan and miRBase to perform complementary pairing analysis on the sequences of miRNA and related target genes, it predicted that miR-194 might be the upstream signaling molecule of KATP channel. This study aims to explore the mechanism by which 2-DG exerts its anti-epileptic effect by regulating KATP channel subunits Kir6.1 and Kir6.2 via miR-194.
METHODS:
A magnesium-free epilepsy model was established and randomly divided into a control group, an epilepsy group (EP group), an EP+2-DG group, and miR-194 groups (including EP+miR-194 mimic, EP+miR-194 mimic+2-DG, EP+miR-194 mimic control, EP+miR-194 inhibitor, EP+miR-194 inhibitor+2-DG, and EP+miR-194 inhibitor control groups). The 2-DG was used to intervene miR-194 mimics, patch-clamp method was used to detect the spontaneous recurrent epileptiform discharges, real-time PCR was used to detect neuronal miR-194, Kir6.1, and Kir6.2 expressions, and the protein levels of Kir6.1 and Kir6.2were detected by Western blotting.
RESULTS:
Compared with the control group, there was no significant difference in the amplitude of spontaneous discharge potential in the EP group (P>0.05), but the frequency of spontaneous discharge was increased (P<0.05). Compared with the EP group, the frequency of spontaneous discharge was decreased (P<0.05). Compared with the EP+miR-194 mimic control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 mimic group were down-regulated (all P<0.05). Compared with the EP+miR-194 inhibitor control group, the mRNA and protein expressions of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor group were up-regulated (all P<0.05). After pretreatment with miR-194 mimics, the mRNA and protein expression levels of KATP channel subunits Kir6.1 and Kir6.2 were decreased (all P<0.05). Compared with the EP+2-DG group, the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 mimic+2-DG group were down-regulated (all P<0.05) and the mRNA and protein expression levels of Kir6.1 and Kir6.2 in the EP+miR-194 inhibitor+2-DG group were up-regulated (all P<0.05).
CONCLUSIONS
The 2-DG might play an anti-epilepsy effect by up-regulating KATP channel subunits Kir6.1 and Kir6.2via miR-194.
Adenosine Triphosphate
;
Anticonvulsants
;
Deoxyglucose/pharmacology*
;
Epilepsy/genetics*
;
Glucose
;
Humans
;
MicroRNAs/genetics*
;
Potassium Channels, Inwardly Rectifying/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
9.Analysis of clinical and imaging features of 6 cases of linear scleroderma en coup de sabre with central nervous system involvement in children.
Xiu Wei ZHUO ; Fang FANG ; Shuai GONG ; Wei Xing FENG ; Chang Hong DING ; Xin XIANG ; Ming GE ; Nan ZHANG ; Jiu Wei LI
Chinese Journal of Pediatrics 2022;60(11):1147-1152
Objective: To summarize the clinical and imaging features of linear scleroderma en coup de saber (LSCS) with central nervous system involvement in children. Methods: The clinical data(clinical manifestations and imaging features) of 6 children diagnosed with LSCS with central nervous system involvement who were admitted to Beijing Children's Hospital Affiliated to Capital Medical University from May 2019 to November 2021 were retrospectively analyzed. Results: The 6 patients were all female, aged 6.8 (3.3, 11.0) years at the time of diagnosis, and aged 3.0 (1.7, 4.1) years at the time of discovery of facial skin lesions. Facial skin lesions appeared before neurological symptoms in 5 cases, and neurological symptoms appeared 2 months before skin lesions in 1 case. All the patients had "sword wound" skin lesions on the forehead with alopecia. Neurological manifestations included epileptic seizures in 6 cases, focal neurological defects in 5 cases, and headaches in 2 cases. The intracranial lesions were all ipsilateral to the skin lesions. The magnetic resonance imaging (MRI) of 6 cases showed abnormal signals mainly involving white matter in 1 hemisphere, and 3 cases showed local encephalomalacia. The scattered low signal was observed in 5 cases on susceptibility weighted imaging. Localized brain parenchyma or leptomeninges enhancement was seen on Gadolinium-enhanced sequences in 5 cases. Scattered foci of calcification on the affected side were seen on cranial CT in 4 cases. Skin biopsy was performed in 2 cases. Part of the lesion of the brain was removed in 1 case, and the pathological findings suggested small vasculitis, which was consistent with skin pathological changes. All patients received symptomatic treatment with antiepileptic drugs. Oral prednisone combined with methotrexate was given in 4 cases, and 1 case was given oral prednisone only. One case was presumed to be in the resting stage of the disease due to significant cerebral atrophy in half of the brain, and only antiepileptic drugs were added. The patients were followed up for 6-36 months. The skin lesions of scleroderma and alopecia did not progress in 5 cases, and hemifacial atrophy was developed in 1 case, which was considered to be combined with Parry-Romberg syndrome. The seizures were controlled in 4 cases. One case had reduced seizure frequency but left hemiplegia. One patient still had intractable epilepsy and paroxysmal headache. Conclusions: LSCS with central nervous system involvement is more common in girls, with seizures and neurological defects as the main manifestations. Intracranial lesions are mostly ipsilateral to the skin lesions. Cerebral microbleeds, calcification, and encephalomalacia foci are common, and the pathological changes in skin and intracranial lesions are consistent with small-vessel vasculitis. Prednisone combined with methotrexate treatment has shown some efficacy, but some children remain with refractory epilepsy and neurological deficit symptoms.
Child
;
Humans
;
Female
;
Scleroderma, Localized
;
Anticonvulsants
;
Methotrexate
;
Prednisone
;
Retrospective Studies
;
Seizures
;
Drug Resistant Epilepsy
;
Calcinosis
;
Alopecia
;
Brain
;
Encephalomalacia
;
Headache
10.Anti-epileptic/pro-epileptic effects of sodium channel modulators from Buthus martensii Karsch.
Qian XIAO ; Zhi-Ping ZHANG ; Yang-Bo HOU ; Dong-Xiao QU ; Le-Le TANG ; Li-Ji CHEN ; Guo-Yi LI ; Yong-Hua JI ; Jie TAO ; Yu-Dan ZHU
Acta Physiologica Sinica 2022;74(4):621-632
The East Asian scorpion Buthus martensii Karsch (BmK) is one of the classical traditional Chinese medicines for treating epilepsy for over a thousand years. Neurotoxins purified from BmK venom are considered as the main active ingredients, acting on membrane ion channels. Voltage-gated sodium channels (VGSCs) play a crucial role in the occurrence of epilepsy, which make them become important drug targets for epilepsy. Long chain toxins of BmK, composed of 60-70 amino acid residues, could specifically recognize VGSCs. Among them, α-like neurotoxins, binding to the receptor site-3 of VGSC, induce epilepsy in rodents and can be used to establish seizure models. The β or β-like neurotoxins, binding to the receptor site-4 of VGSC, have significant anticonvulsant effects in epileptic models. This review aims to illuminate the anticonvulsant/convulsant effects of BmK polypeptides by acting on VGSCs, and provide potential frameworks for the anti-epileptic drug-design.
Animals
;
Anticonvulsants/therapeutic use*
;
Neurotoxins/pharmacology*
;
Scorpion Venoms/pharmacology*
;
Scorpions/chemistry*
;
Voltage-Gated Sodium Channels

Result Analysis
Print
Save
E-mail