1.Multi-omics reveals the inhibition mechanism of Bacillus velezensis DJ1 against Fusarium graminearum.
Meng SUN ; Lu ZHOU ; Yutong LIU ; Wei JIANG ; Gengxuan YAN ; Wenjing DUAN ; Ting SU ; Chunyan LIU ; Shumei ZHANG
Chinese Journal of Biotechnology 2025;41(10):3719-3733
Bacillus velezensis DJ1 exhibits broad-spectrum antagonistic activity against diverse phytopathogenic fungi, while its biocontrol mechanisms against Fusarium graminearum, the causal agent of maize stalk rot, remain poorly characterized. In this study, we integrated genomics and transcriptomics to elucidate the antifungal mechanisms of strain DJ1. The results demonstrated that DJ1 inhibited F. graminearum with the efficacy of 64.4%, while its polyketide crude extract achieved the control efficacy of 55% in pot experiments against this disease. Whole-genome sequencing revealed a single circular chromosome (3 929 792 bp, GC content of 47%) harboring 12 biosynthetic gene clusters for secondary metabolites, six of which encoded known antimicrobial compounds (macrolactin H, bacillaene, difficidin, surfactin, fengycin, and bacilysin). Transcriptomic analysis identified 243 differentially expressed genes (152 upregulated and 91 downregulated, P < 0.05), which were potentially associated with the antagonistic activity against F. graminearum. KEGG enrichment analysis highlighted activation (P < 0.05) of cysteine/methionine metabolism, pentose phosphate pathway, and polyketide biosynthesis pathways, indicating that DJ1 employed synergistic strategies involving antimicrobial compound synthesis, energy metabolism enhancement, and nutrient competition to suppress pathogens. This study provides a theoretical foundation for developing novel microbial resources and application technologies to combat phytopathogenic fungi.
Fusarium/drug effects*
;
Bacillus/metabolism*
;
Plant Diseases/prevention & control*
;
Antifungal Agents/pharmacology*
;
Genomics
;
Zea mays/microbiology*
;
Transcriptome
;
Gene Expression Profiling
;
Antibiosis
;
Multigene Family
;
Multiomics
2.Screening and identification of a biocontrol strain CXG2-5 against kiwifruit bacterial canker and preparation of microcapsules.
Jing HUANG ; Ruolan YANG ; Xinying LIU ; Zihan ZHANG ; Nana WANG ; Lili HUANG
Chinese Journal of Biotechnology 2025;41(10):3734-3746
To develop biocontrol agents for the control of kiwifruit bacterial canker, we isolated a strain CXG2-5 with inhibitory activity against Pseudomonas syringae pv. actinidiae (Psa), the pathogen of kiwifruit bacterial canker, from the rhizosphere soil of kiwifruit by the plate confrontation test. The strain was identified by morphological observation, physiological and biochemical tests, and molecular biological methods. The indoor control efficacy of the strain was determined by the inoculation of the strain into detached branches with wounds and into leaf discs by vacuum infiltration. The ability of the strain to expand and colonize leaf veins was determined by fluorescent labeling and scanning electron microscopy. Subsequently, the strain was prepared into microcapsules, the field control efficacy of which was evaluated. The strain CXG2-5 was identified as Pseudomonas benzenivorans. It demonstrated good antagonistic activity against Psa, with an inhibition zone diameter of 22 mm and an inhibition rate of 72.7%. The preventive effects of the strain on kiwifruit bacterial canker were better than the therapeutic effects on both detached branches and leaves, with the preventive effects reaching 65% and 92.4%, respectively. The control effect of microcapsules of this strain in the field reached 60.89%, which was slightly lower than that of 20% kasugamycin and higher than that of Bacillus subtilis wettable powder. In conclusion, strain CXG2-5 serves as a candidate for the control of kiwifruit bacterial canker, and the prepared microcapsules have good value for development and application.
Actinidia/microbiology*
;
Plant Diseases/prevention & control*
;
Pseudomonas syringae
;
Pseudomonas/isolation & purification*
;
Capsules
;
Antibiosis
;
Biological Control Agents
;
Pest Control, Biological/methods*
3.Screening and fermentation condition optimization of Streptomyces scabies antagonists.
Mengyan DOU ; Ziwei WANG ; Pan ZHAO ; Xiu WANG ; Aiping WANG ; Naiqin ZHONG
Chinese Journal of Biotechnology 2025;41(10):3747-3763
In recent years, potato scab caused by Streptomyces scabies is aggravating year by year, becoming an industrial problem urgently to be resolved. Screening antagonistic bacteria with good inhibitory effect and wide adaptability is the main measure to realize effective prevention and control of the disease. This study screened three strains of antagonistic bacteria DXT2-4, T2-1 and 21-14 with good inhibitory effect on S. scabies by using plate standoff test, and identified them as Bacillus altitudinis, Bacillus safensis and Bacillus pumilus, respectively, based on morphological characteristics, physiological and biochemical properties, and 16S rRNA gene sequences. DXT2-4, T2-1 and 21-14 showed the pot control efficacy of 68.83%, 48.57%, and 57.14%, respectively. The field control efficacy of the three strains was 59.48%, 34.58% and 51.75% in Hulun Buir, Inner Mongolia Autonomous Region and 55.14%, 36.05%, and 49.05% in Huizhou, Guangdong. The three strains could grow normally in the media with pH 1.0-13.0 and with 1%-11% NaCl, and they had inhibitory effects on Rhizoctonia solani, Verticillium dahliae, Alternaria solani, and Fusarium oxysporum. The indole-3-acetic acid yields of DXT2-4, T2-1, and 21-14 were 2.23, 1.11, and 1.67 mg/L, respectively. DXT2-4 and 21-14 demonstrated strong abilities to solubilize phosphorus. The optimal carbon source, nitrogen source, and inorganic salt for fermentation of strain DXT2-4 were 2% molasses+2% corn starch, 2% soybean meal, and 0.3% MgSO4·7H2O, respectively. These findings suggest the three strains of bacteria can efficiently inhibit the growth of S. scabies and have strong environmental adaptability. Particularly, DXT2-4 has the best effects of inhibiting the disease and promoting plant growth, showing a high development value and broad application prospects, this is of great significance for promoting sustainable potato production and ensuring the environmentally sound utilization of resources.
Streptomyces/metabolism*
;
Fermentation
;
Plant Diseases/prevention & control*
;
Solanum tuberosum/growth & development*
;
Bacillus/growth & development*
;
Antibiosis
4.Antagonistic activity of volatile metabolites from Trichoderma asperellum.
Lingyun TAO ; Yiwen ZHANG ; Yaqian LI ; Laipeng LUO ; Zenglu ZHANG ; Jie CHEN
Chinese Journal of Biotechnology 2020;36(6):1181-1189
Trichoderma spp. is a kind of filamentous fungi with important biocontrol value. Twelve strains of Trichoderma spp. were isolated from the soils of different types of crops in Shaoxing, Zhejiang and Foshan, Guangdong. The antagonistic resistance to Fusarium oxysporum was compared by plate confrontation test. The further analysis of volatile secondary metabolites for two strains were carried out using HS-SPME-GC-MS analysis. The results showed that T. asperellum ZJSX5003 and GDFS1009 had fast growth ability, and the inhibition effects on F. oxysporum were 73% and 74% respectively. Six identical volatile metabolites were detected as follows 2-Methyl-1-propanol, 3-Methyl-1-butanol, 3-Methyl-3-buten-1-ol, Acetyl methyl carbinol, Butane-2,3-diol and 6-n-pentyl-2H-pyran-2-one (6-PAP). Among them, 6-PAP was validated to have a higher inhibitory effect on F. oxysporum in vitro. This study will provide basis for the development of biocontrol agents with metabolites of Trichoderma, such as 6-PAP.
Antibiosis
;
Antifungal Agents
;
pharmacology
;
Fusarium
;
drug effects
;
physiology
;
Gas Chromatography-Mass Spectrometry
;
Trichoderma
;
chemistry
;
metabolism
5.Screening, identification and antagonistic effect evaluation of biocontrol strains to Asarum leaf blight.
Ya-Ling LIU ; Ying YU ; Li-Li CUI ; Hui-Xia LEI ; Hai-Kun LU ; Jing GUO
China Journal of Chinese Materia Medica 2020;45(5):1047-1052
Leaf blight is the main disease of Asarum. At present, chemical treatment is main measure for disease control, and there is no report on biological control. In order to achieve the biological control of Asarum leaf blight, the biocontrol strains with antagonistic effect on Asarum leaf blight were screened. The rhizosphere bacteria of healthy Asarum plants were isolated by soil dilution method, and the isolated strains were screened by the methods of antagonistic antifungal and fermentation liquid antifungal, then the strains were identified and the control effect in vivo was determined. Abiocontrol bacterial strains S2-31 which with high antagonism to leaf blight was obtained from more than 100 isolated strains. The inhibitory rates of antagonistic antifungal and fermentation liquid antifungal reached 92.47% and 60.56%, respectively. It was identified by morphology and 16 S rDNA sequence analysis, and the strain was identified as Brevibacillus laterosporus. The results of indoor potted experiment showed that the control effect was 79.87%, 71.44% and 66.82% on the 3 rd, 5 th and 7 th day after inoculation, respectively, which indicated that S2-31 could reduce the disease index and control the development of Asarum leaf blight.
Antibiosis
;
Asarum/microbiology*
;
Biological Control Agents
;
DNA, Ribosomal
;
Firmicutes
;
Fungi/pathogenicity*
;
Plant Diseases/prevention & control*
;
Rhizosphere
;
Soil Microbiology
6.Isolation,screening and identification of endophytic fungi and detection of its antifungal effects against Alternaria panax.
Chun-Yuan ZHOU ; Xiang-Min PIAO ; Mei-Xia YAN ; Ying-Ping WANG
China Journal of Chinese Materia Medica 2019;44(2):274-277
To obtain biocontrol fungus for Alternaria panax,the antifungal effects of one strain of endophytic fungi isolated from leaves of healthy ginseng were screened and evaluated by using dual-culture method,and the taxonomic assignment of the screened strain was identified based on the morphological characters and ITS sequence analysis. The results of dual-culture showed that one of the endophytes marked as FS-01 had good antifungal effects and the inhibitory rates of FS-01 strain to A. panax was( 60. 21±0. 12) %.The hyphae junction of the both strains,A. panax dissolved,broke and winded,while the hyphae of FS-01 strain remained normal. The inhibitory rates of non-sterilized FS-01 strain fermentation liqud was( 13. 94±0. 21) %. Strain FS-01 identified as Chaetomium globosum.
Alternaria
;
pathogenicity
;
Antibiosis
;
Chaetomium
;
classification
;
isolation & purification
;
Endophytes
;
isolation & purification
;
Fungicides, Industrial
;
Panax
;
microbiology
;
Plant Diseases
;
prevention & control
7.Isolation and identification of endophytic fungi from Chelidonium majus and their antifungal activity.
Ting HUANG ; Wei XIE ; Xiao-Dong LIU ; Kai-Xun TANG ; Rui YANG
China Journal of Chinese Materia Medica 2019;44(3):460-464
In order to find new source of antifungal agents, eleven cultivable endophytic fungi were isolated from the roots,stems and leaves of Chelidonium majus by traditional method. Seven of them were identified as Colletotrichum(L1, L2, L3, S1, S3, S4, S5), and three of them were identified as Fusarium(R1,R2,R3) by morphological features and molecular biological technology. The antifungal activity test showed that all the tested fungi displayed some inhibitory activity against five common plant pathogens(C. gloeosporioides, Curvularia lunata, Pyricularia oryza, Alternaria alternate and A. brassicae), and their inhibition rate of some test items were over 60%. Among them, R1, S2, S3 and S4 were more potent than others. This study enriches the understanding of endophytes from Ch. majus and provides a basis for the study of new microbial fungicides.
Alternaria
;
pathogenicity
;
Antibiosis
;
Ascomycota
;
pathogenicity
;
Chelidonium
;
microbiology
;
Colletotrichum
;
chemistry
;
isolation & purification
;
Endophytes
;
chemistry
;
isolation & purification
;
Fusarium
;
chemistry
;
isolation & purification
8.Research progress in root rot diseases of Chinese herbal medicine and control strategy by antagonistic microorganisms.
Fen GAO ; Xiao-xia REN ; Meng-liang WANG ; Xue-mei QIN
China Journal of Chinese Materia Medica 2015;40(21):4122-4126
In recent years, root rot diseases of Chinese herbal medicine have been posing grave threat to the development of the traditional Chinese medicine industry. This article presents a review on the occurring situation of the root rot disease, including the occurrence of the disease, the diversity of the pathogens, the regional difference in dominant pathogens,and the complexity of symptoms and a survey of the progress in bio-control of the disease using antagonistic microorganisms. The paper also discusses the existing problems and future prospects in the research.
Animals
;
Antibiosis
;
Bacteria
;
growth & development
;
Fungi
;
physiology
;
Nematoda
;
growth & development
;
Pest Control, Biological
;
methods
;
Plant Diseases
;
microbiology
;
parasitology
;
prevention & control
;
Plant Roots
;
microbiology
;
parasitology
;
Plants, Medicinal
;
microbiology
;
parasitology
9.In Vitro Antagonism of Phytophthora capsici And Fusarium solani by Bacterial Isolates from Sarawak
Mohd Farith Kota ; Awang Ahmad Sallehin Awang Husaini ; Samuel Lihan ; Mohd Hasnain
Malaysian Journal of Microbiology 2015;11(2):135-143
Aims: Phytophthora capsici and Fusarium solani are common fungal pathogens causing severe diseases that lead to
economic loss in pepper industry, especially in Sarawak. In response to the infections, chemical approach is more
common; nevertheless, biological control is more favorable to control fungal pathogens. Biological control approach
greatly reduces the problems associated with chemical applications and it restores balance of the natural environment.
Here we present the ongoing work to study the action of antagonistic bacteria, Bacillus sp. and Pseudomonas sp., that
produce volatile and non-volatile antifungal compounds against P. capsici and F. solani on pepper plants.
Methodology and results: A total of seven bacterial candidates were isolated from different locations and tested for
their antagonistic properties against P. capsici and F. solani in a dual culture assay and extracellular metabolite test.
Extracellular hydrolytic enzymes production was also monitored and followed by genotypic indentification. Preliminary
antagonism tests indicated that bacterial isolate Pep3 and Pep4 inhibit up to 50% of the growth of P. capsici and F.
solani as compared to the control. Subsequent investigation on extracellular hydrolytic enzyme production revealed that
both bacterial isolates are capable of secreting hydrolytic enzymes. Microscopic and genotypic analyses identified the
bacterial isolates Pep3 as Bacillus amyloliquefaciens (KJ461444) and Pep4 as Pseudomonas pachastrellae
(KM460937).
Conclusion, significance and impact of study: B. Amyloliquefaciens (KJ461444) and P. pachastrellae (KM460937)
inhibited the growth of P. capsici and F. solani thus reflecting the potential of the produced metabolites to be purified and
used in combating plant pathogenic fungi.
Biological Control Agents
;
Fungi
;
Antibiosis
10.Effect of Glomus versiforme and Trichoderma harzianum on growth and quality of Salvia miltiorrhiza.
Xue WANG ; Mei-Lan CHEN ; Guang YANG ; Xiao-Ming LI ; Peng-Ying LI ; Min CHEN
China Journal of Chinese Materia Medica 2014;39(9):1574-1578
The present study aimed to investigate the effect of Glomus versiforme and Trichodema harzianum on the growth and quality of Salvia miltiorrhiza continuous cropping under field conditions. The field plot experiment was conducted, these active components in the plant were analyzed by HPLC, the root diseases incidence rate of S. miltiorrhiza determined by observation and counting, and relative parameters were measured. The data was statistically processed. The result showed that inoculation of G. versiforme and combined inoculation of G. versiforme with T. harzianum significantly decreased the root diseases incidence rate of S. miltiorrhiza, and combined inoculation of G. versiforme with T. harzianum was better than other treatments. All treatments improved accumulation of active ingredients in root. Inoculation of G. versiforme and combined inoculation of G. versiforme with T. harzianum significantly increased the content of salvianolic acid B and cryptotanshinone of root (P < 0.05), Inoculation of G. versiforme, T. harzianum and combined inoculation of G. versiforme with T. harzianum significantly enhanced the content of tanshinone I and tanshinone II(A) of the root (P < 0.05). It may conclude that inoculation of G. versiforme and combined inoculation of G. versiforme with T. harzianum can effectively reduce the root diseases incidence of continuous cropping S. miltiorrhiza, and improve the quality of S. miltiorrhiza.
Antibiosis
;
physiology
;
Benzofurans
;
metabolism
;
Diterpenes, Abietane
;
metabolism
;
Glomeromycota
;
physiology
;
Host-Pathogen Interactions
;
Phenanthrenes
;
metabolism
;
Plant Diseases
;
microbiology
;
Plant Roots
;
growth & development
;
metabolism
;
microbiology
;
Salvia miltiorrhiza
;
growth & development
;
metabolism
;
microbiology
;
Trichoderma
;
physiology

Result Analysis
Print
Save
E-mail