1.Correspondence to editorial on “Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)”
Chuan LIU ; Ling YANG ; Hong YOU ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(2):e155-e157
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
4.Correspondence to editorial on “Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)”
Chuan LIU ; Ling YANG ; Hong YOU ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(2):e155-e157
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Correspondence to editorial on “Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)”
Chuan LIU ; Ling YANG ; Hong YOU ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(2):e155-e157
7.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
8.Effect mechanism of electroacupuncture on diabetic peripheral neuropathy in rats based on gut microbiota and metabolomics.
Shanshan AI ; Dongrui GAO ; Ziting ZHAI ; Suyong WANG ; Yawen XUE ; Zhihan LIU ; Xiao YAN
Chinese Acupuncture & Moxibustion 2025;45(7):945-956
OBJECTIVE:
To explore the effect mechanism of electroacupuncture (EA) for ameliorating diabetic peripheral neuropathy (DPN) based on the analysis of gut microbiota and metabolomics.
METHODS:
Thirty SPF-grade male SD rats were randomly divided into a normal group, a model group, and an EA group, with 10 rats in each one. Except in the normal group, the intraperitoneally injection with streptozotocin was used to induce diabetes mellitus model in the rest groups. In the EA group, acupuncture was delivered at bilateral "Zusanli" (ST36), "Sanyinjiao" (SP6), "Pishu" (BL20) and "Shenshu" (BL23), and electric stimulation was attached to "Zusanli" (ST36)-"Sanyinjiao" (SP6) and "Pishu" (BL20)-"Shenshu" (BL23), on the same side, with continuous wave and a frequency of 2 Hz, for 10 min in each intervention. The intervention measure of each group was delivered once every 2 days, 3 times a week, for 8 consecutive weeks. Body weight, random blood glucose (RBG), thermal withdrawal latency (TWL), and mechanical withdrawal threshold (MWT) before intervention, and in 4 and 8 weeks of intervention, separately, as well as sensory nerve conduction velocity (SCV) and motor nerve conduction velocity (MCV) of the sciatic nerve after intervention were measured. Metagenomic sequencing (MS) was used to analyze gut microbiota and screen for differential species. Liquid chromatography-mass spectrometry (LC-MS) was employed to detect the differential metabolites in plasma, and the metabolic pathway enrichment analysis was performed on the differential metabolites. Spearman correlation analysis was adopted to assess the relationship between gut microbiota and metabolomics.
RESULTS:
After 4 and 8 weeks of intervention, when compared with the model group, the EA group showed the increase in body weight, TWL, MWT (P<0.01), and the decrease in RBG (P<0.01). Compared with the normal group, SCV and MCV, as well as Chao1 index were dropped in the model group (P<0.01), and those were elevated in the EA group when compared with those in the model group (P<0.01). The dominant bacterial phyla of each group were Firmicutes (F) and Bacteroidota (B), the ratio of them (F/B) in the model group was lower than that of the normal group (P<0.05), and F/B in the EA group was higher when compared with that in the model group (P<0.05). In comparison with the normal group, the relative abundance increased in Prevotella, Segatella, Prevotella-hominis and Segatella-copri (P<0.05); and it decreased in Ligilactobacillus, Eubacterium, Pseudoflavonifractor, Ligilactobacillus-murinus (P<0.05) in the model group. Compared with the model group, the relevant abundance of the above mentioned gut bacteria was all ameliorated in the EA group (P<0.05, P<0.01). Among the three groups, 120 differential metabolites were identified and enriched in 28 key metabolic pathways, such as glycerophospholipid and linoleic acid, of which, glycerophospholipid was the most significantly affected pathway in EA intervention. Spearman correlation analysis showed that 6 phosphatidylcholine metabolites were significantly positively correlated with Pseudoflavonifractor and were negatively with Prevotella, Segatella, Prevotella-hominis, Segatella-copri; 5 phosphatidylethanolamine metabolites were significantly negatively correlated with Pseudoflavonifractor and positively correlated with Prevotella, Segatella, Prevotella-hominis, Segatella-copri.
CONCLUSION
EA may regulate metabolic pathways such as glycerophospholipid, modulate specific gut microbiota such as Pseudoflavonifractor, Prevotella, and Segatella, and the co-expressed differential metabolites like phosphatidylcholine and phosphatidylethanolamine, thereby reducing blood glucose and protecting nerve function, so as to relieve the symptoms of DPN of rats.
Animals
;
Electroacupuncture
;
Male
;
Gastrointestinal Microbiome
;
Diabetic Neuropathies/microbiology*
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Humans
;
Acupuncture Points
9.Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment.
Ye WANG ; Qing AI ; Taoping SHI ; Yu GAO ; Bin JIANG ; Wuyi ZHAO ; Chengjun JIANG ; Guojun LIU ; Lifeng ZHANG ; Huaikang LI ; Fan GAO ; Xin MA ; Hongzhao LI ; Xu ZHANG
Chinese Medical Journal 2025;138(3):325-331
BACKGROUND:
Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood.
METHODS:
A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons.
RESULTS:
All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions.
CONCLUSIONS
This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Animals
;
Robotic Surgical Procedures/methods*
;
Laparoscopy/methods*
10.Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model.
Xing TU ; Zixing ZOU ; Jiahui LI ; Simiao ZENG ; Zhengchao LUO ; Gen LI ; Yuanxu GAO ; Kang ZHANG
Chinese Medical Journal 2025;138(2):172-184
BACKGROUND:
Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited. Notably, artificial intelligence (AI) technologies have significantly advanced drug discovery. This study aimed to discover RIPK3 inhibitor with AI assistance.
METHODS:
An acute ocular hypertension model was used to simulate pathological ocular hypertension in vivo . We employed a series of AI methods, including large language and graph neural network models, to identify the target compounds of RIPK3. Subsequently, these target candidates were validated using molecular simulations (molecular docking, absorption, distribution, metabolism, excretion, and toxicity [ADMET] prediction, and molecular dynamics simulations) and biological experiments (Western blotting and fluorescence staining) in vitro and in vivo .
RESULTS:
AI-driven drug screening techniques have the potential to greatly accelerate drug development. A compound called HG9-91-01, identified using AI methods, exerted neuroprotective effects in acute glaucoma. Our research indicates that all five candidates recommended by AI were able to protect the morphological integrity of RGC cells when exposed to hypoxia and glucose deficiency, and HG9-91-01 showed a higher cell survival rate compared to the other candidates. Furthermore, HG9-91-01 was found to protect the retinal structure and reduce the loss of retinal layers in an acute glaucoma model. It was also observed that the neuroprotective effects of HG9-91-01 were highly correlated with the inhibition of PANoptosis (apoptosis, pyroptosis, and necroptosis). Finally, we found that HG9-91-01 can regulate key proteins related to PANoptosis, indicating that this compound exerts neuroprotective effects in the retina by inhibiting the expression of proteins related to apoptosis, pyroptosis, and necroptosis.
CONCLUSION
AI-enabled drug discovery revealed that HG9-91-01 could serve as a potential treatment for acute glaucoma.
Animals
;
Glaucoma/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Mice
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Artificial Intelligence
;
Retinal Ganglion Cells/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
;
Mice, Inbred C57BL
;
Male

Result Analysis
Print
Save
E-mail