1.Discovery of miRNA and target signal molecules involved in inhibition of chlorogenic acid on N-acetyl-p-aminophenol-induced hepatotoxicity based on microRNA array.
Hong ZHANG ; Xin-Nan GU ; Meng-Juan WEI ; Li-Li JI
China Journal of Chinese Materia Medica 2023;48(4):1014-1022
This study aims to observe the effect of chlorogenic acid(CGA) on microRNA(miRNA) in the process of protecting against N-acetyl-p-aminophenol(APAP)-induced liver injury. Eighteen C57BL/6 mice were randomly assigned into a normal group, a model group(APAP, 300 mg·kg~(-1)), and a CGA(40 mg·kg~(-1)) group. Hepatotoxicity of mice was induced by intragastric administration of APAP(300 mg·kg~(-1)). The mice in the CGA group were administrated with CGA(40 mg·kg~(-1)) by gavage 1 h after APAP administration. The mice were sacrificed 6 h after APAP administration, and plasma and liver tissue samples were collected for the determination of serum alanine/aspartate aminotransferase(ALT/AST) level and observation of liver histopathology, respectively. MiRNA array combined with real-time PCR was employed to discover important miRNAs. The target genes of miRNAs were predicted via miRWalk and TargetScan 7.2, verified by real-time PCR, and then subjected to functional annotation and signaling pathway enrichment. The results showed that CGA administration lowered the serum ALT/AST level elevated by APAP and alleviate the liver injury. Nine potential miRNAs were screened out from the microarray. The expression of miR-2137 and miR-451a in the liver tissue was verified by real-time PCR. The expression of miR-2137 and miR-451a was significantly up-regulated after APAP administration, and such up-regulated expression was significantly down-regulated after CGA administration, consistent with the array results. The target genes of miR-2137 and miR-451a were predicted and verified. Eleven target genes were involved in the process of CGA protecting against APAP-induced liver injury. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment with DAVID and R language showed that the 11 target genes were enriched in Rho protein-related signal transduction, vascular patterning-related biological processes, binding to transcription factors, and Rho guanyl-nucleotide exchange factor activity. The results indicated that miR-2137 and miR-451a played an important role in the inhibition of CGA on APAP-induced hepatotoxicity.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Chlorogenic Acid
;
Acetaminophen
;
Chemical and Drug Induced Liver Injury, Chronic
;
Alanine Transaminase
;
MicroRNAs
2.Rapid determination of acetaminophen in plasma by LC-MS/MS.
Yan YU ; Hui Ling LI ; Jing MA ; Bo ZHOU ; Fang DONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(5):364-366
Objective: To establish a method for the rapid determination of acetaminophen (APAP) in human plasma by LC-MS/MS. Methods: The plasma samples were extracted by methanol and acetonitrile (1: 1) and purified directly. C(18) column was used for sample separation. The mobile phase were methanol (5 mmol/L ammonium acetate) and water (5 mmol/L ammonium acetate). Samples were analyzed by LC MS/MS with the electrospray ionization multi reaction monitoring (MRM) mode. Results: The calibration curves of APAP was linear in the concentration range of 0~10 mg/L, the correlation coefficient (r) was greater than 0.999 0. The relative standard deviation within and between batches was less than 10%. The recovery rate were 96.81%~101.7%. The detection limit of the method was 0.1 μg/L and the lower limit of quantification was 0.3 μg/L. Conclusion: This method has strong specificity, high sensitivity and reliable determination results. It is suitable for the rapid analysis of clinical plasma samples.
Humans
;
Chromatography, Liquid/methods*
;
Acetaminophen
;
Tandem Mass Spectrometry/methods*
;
Methanol
;
Chromatography, High Pressure Liquid/methods*
3.c-Jun N-terminal kinase signaling pathway in acetaminophen-induced liver injury.
Wenshang CHEN ; Jijin ZHU ; Shilai LI
Chinese Critical Care Medicine 2023;35(11):1223-1228
Acetaminophen (APAP) is the most common antipyretic, analgesic and anti-inflammatory drug, but its overdose often leads to acute liver injury, even acute liver failure, and death in some severe cases. At present, there is still a lack of specific treatments. The c-Jun N-terminal kinase (JNK) signal pathway is one of the potential therapeutic targets identified in recent years in overdose APAP-induced acute liver injury. This article reviews the JNK signaling pathway of APAP in liver metabolism, the activation of JNK signaling pathway and the amplification of oxidative stress, other pathways or cellular processes related to JNK signaling pathway, and the possible challenges of drugs targeting JNK, so as to provide direction and feasibility analysis for further research and clinical application of JNK signaling pathway targets in APAP hepatotoxicity, and to provide reference for searching for other targets.
Animals
;
Mice
;
Acetaminophen/adverse effects*
;
Chemical and Drug Induced Liver Injury
;
Chemical and Drug Induced Liver Injury, Chronic/metabolism*
;
JNK Mitogen-Activated Protein Kinases/metabolism*
;
Liver
;
Mice, Inbred C57BL
;
Signal Transduction
4.Induction of peripheral blood mononuclear cells to hepatocyte-like cells and preliminary study of cell response to injury under the effect of acetaminophen.
Ping LIU ; Biao ZHANG ; Quan ZENG ; Si Wen CHEN ; Chen GE ; Wei Hua WANG ; Chang Zheng WANG ; Wen YUE ; Jun WAN
Chinese Journal of Hepatology 2022;30(1):87-93
Objective: To establish a method for the induction of peripheral blood mononuclear cells to hepatocyte-like cells, and preliminarily investigate cell response to injury under the effect of acetaminophen (APAP). Methods: The surface marker CD45 of peripheral blood mononuclear cells wase detected cells by using flow cytometry and immunofluorescence methods. The cellular morphology of induced hepatocyte-like cells was observed under an inverted microscope. Real-time fluorescent quantitative PCR (RT-PCR) was used to detect the expression level of hepatocyte-specific genes, such as cytochrome (CY) P1A2, CYP3A4, CYP2C9, albumin (ALB), alpha-fetoprotein (AFP), and hepatocyte nuclear factor (HNF)4α mRNA. Immunofluorescence method was used to detect intracellular hepatocyte markers AFP, HNF4α, and ALB expression at the protein level. Biochemical analyzer was used to detect hepatocyte-specific secretory functions of AFP, ALB, and urea. Luciferase chemiluminescence method was used to detect the activity of key drug metabolizing enzyme CYP3A4. Colorimetric assay was used to detect the effect of the drug acetaminophen on hepatocyte-like cells, and alanine aminotransferase (ALT) was used as an indicator of liver cell injury. The statistical differences between the data were compared with t-test and rank-sum test. Results: The positive expression rate of CD45 cell surface markers isolated from peripheral blood mononuclear cells was about 98%, and hepatocyte-like cell morphology changes appeared on 15th day of induction. Compared with isolated mononuclear cells, CYP1A2, CYP3A4, CYP2C9, ALB, AFP and HNF4α mRNA was markedly elevated. The expression level of AFP, ALB and HNF4α protein were equally increased, and the secretory function of AFP, ALB and urea were enhanced. Compared with primary hepatocytes, CYP1A2, CYP2C9, AFP, HNF4α mRNA, and CYP3A4 mRNA did not decrease. The expression levels of AFP, ALB, and HNF4α proteins in the cells did not decrease, and the secretory function of AFP, ALB, and urea did not decrease. In addition, the CYP3A4 enzyme activity produced by hepatocyte-like cells was similar to that of primary hepatocytes. Compared with hepatocyte-like cells incubated without APAP, hepatocyte-like cells incubated with APAP had higher ALT level. Under the effect of APAP, the ALT level of hepatocyte-like cells was higher than isolated mononuclear cells. Conclusion: Peripheral blood mononuclear cells can be induced into hepatocyte-like cells with partial characteristics of hepatocytes, including the activity of CYP3A4, a key enzyme of hepatocyte drug metabolism. Additionally, preliminarily ALT secretory features reflect the hepatocytes injury under the effect of acetaminophen.
Acetaminophen/pharmacology*
;
Cell Differentiation
;
Cells, Cultured
;
Hepatocytes
;
Leukocytes, Mononuclear
;
RNA, Messenger
5.Prophylactic paracetamol for intraoperative shivering prevention for patients undergoing gynecological procedures under spinal anesthesia: A randomized clinical trial
Journal of the Philippine Medical Association 2022;101(1):68-78
Introduction:
Shivering is defined as an involuntary, repetitive activity of skeletal muscles. Mechanisms of shivering for patients undergoing surgical operation include intraoperative heat loss, increase sympathetic tone, pain, and systemic release of pyrogens. Regional anesthesia, particularly spinal anesthesia causes redistribution of core heat to the peripheral tissues this in turn predisposes patient to shivering and hypothermia. The median incidence of shivering related to regional anesthesia observed in a review of 21 studies is 55%. Paracetamol is one of the most commonly used analgesic and antipyretic drugs around the world, available without a prescription, it has analgesic and antipyretic property similar to NSAIDs it also affects core body temperature through the hypothalamus.
Though different modalities have been established for shivering prevention, the search for a cost-effective drug with lesser side effects and improvement of patient satisfaction still continues.
Objective:
The aim of this study was to evaluate the effect of prophylactic dose of Paracetamol on postanesthesia shivering on patients undergoing, gynecological procedures under spinal anesthesia as compared to patients not given Paracetamol.
Methodology
This is a Double blind, Randomized, Placebo Controlled conducted in patients scheduled for benign gynecological procedures such as Hysterectomy with or without adnexectomy. Using simple random sampling through fishbowl method and a sample size of 42, all patients who consented to participate in the study was randomly assigned to receive Paracetamol 900 mg IV or Placebo 0.9% Saline intravenously 30 minutes prior to induction of spinal anesthesia. Incidence and severity of Shivering was documented using shivering five point scale outlined by Crossley and Mahajan, while patient satisfaction was also evaluated using the Likert Scale, possible side effects was also assessed.
Acetaminophen
;
Anesthesia, Spinal
6.Atractylenolide Ⅰ improves acetaminophen-induced acute liver injury in mice by inhibiting MAPK/NF-κB signaling pathway.
Zhi-Mei MA ; Shang-Lei LAI ; Jin-Yan ZHU ; Qin-Chao DING ; Xiao-Bing DOU ; Song-Tao LI
China Journal of Chinese Materia Medica 2022;47(4):1017-1023
This study explored the protective effect of atractylenolide Ⅰ(AO-Ⅰ) against acetaminophen(APAP)-induced acute liver injury(ALI) in mice and its underlying mechanism. C57 BL/6 J mice were randomly divided into a control group, an APAP group(500 mg·kg~(-1)), a low-dose combination group(500 mg·kg~(-1) APAP + 60 mg·kg~(-1) AO-Ⅰ), and a high-dose combination group(500 mg·kg~(-1) APAP + 120 mg·kg~(-1) AO-Ⅰ). ALI was induced by intraperitoneal injection of APAP(500 mg·kg~(-1)). AO-Ⅰ by intragastric administration was performed 2 hours before APAP treatment, and the control group received the same dose of solvent by intragastric administration or intraperitoneal injection. The protective effect of AO-Ⅰ against APAP-induced ALI was evaluated by detecting alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels in the plasma and H&E staining in liver tissues of mice. The malondialdehyde(MDA) and glutathione(GSH) content and catalase(CAT) activity in mouse liver tissues were detected to evaluate the effect of AO-Ⅰ on APAP-induced oxidative stress in the liver. The proteins in the liver p38 mitogen-activated protein kinase(p38 MAPK), c-jun N-terminal kinase(JNK), and nuclear factor kappa-B p65(NF-κB p65) signaling pathways were measured by Western blot, and the liver inflammatory cytokines interleukin-1β(IL-1β) and interleukin-6(IL-6) were detected by real-time PCR. Compared with the APAP group, the combination groups showed reduced APAP-induced ALT level and liver MDA content, potentiated liver CAT activity, and elevated GSH content. Mechanistically, AO-Ⅰ treatment significantly inhibited APAP-up-regulated MAPK phosphorylation and NF-κB p65, and significantly reduced the transcriptional activities of IL-1β and IL-6, downstream targets of NF-κB p65. AO-Ⅰ can improve APAP-induced ALI and the underlying mechanism is related to the inhibition of the MAPK/NF-κB p65 signaling pathway in APAP-challenged mice.
Acetaminophen/adverse effects*
;
Animals
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Lactones
;
Mice
;
NF-kappa B/metabolism*
;
Sesquiterpenes
;
Signal Transduction
7.Mechanism of Tibetan medicine Ershiwuwei Songshi Pills against liver injury induced by acetaminophen in mice based on Keap1/Nrf2 and TLR4/NF-κB p65 signaling pathways.
Yu-Ru SHA ; Xiao-Min LUO ; Yi DING ; Bin YANG ; Cheng-Fang JIAN ; Pu-Yang GONG ; Jian GU ; Rui TAN
China Journal of Chinese Materia Medica 2022;47(8):2049-2055
The present study investigated the mechanism of the Tibetan medicine Ershiwuwei Songshi Pills(ESP) against the liver injury induced by acetaminophen(APAP) in mice based on the kelch-like ECH-associated protein 1(Keap1)/nuclear transcription factor E2 related factor 2(Nrf2) and Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) p65 signaling pathways. Kunming mice were randomly divided into a blank control group, a model group, an N-acetyl-L-cysteine(NAC) group, and high-(400 mg·kg~(-1)), medium-(200 mg·kg~(-1)), and low-dose(100 mg·kg~(-1)) ESP groups. After 14 days of continuous administration, except for those in the control group, the mice were intraperitoneally injected with 200 mg·kg~(-1) APAP. After 12 h, the serum and liver tissues of mice were collected. Hematoxylin-eosin(HE) staining was performed on pathological sections of the liver, and the levels of aspartate aminotransferase(AST) and alanine aminotransferase(ALT) in the serum and the levels of glutathione(GSH), malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), myeloperoxidase(MPO), and total antioxidant capacity(T-AOC) in liver tissue homogenate were detected to observe and analyze the protective effect of ESP on APAP-induced liver injury in mice. The serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1β), and interleukin-6(IL-6) were determined by enzyme-linked immunosorbent assay(ELISA). The protein expression of Nrf2, Keap1, TLR4, and NF-κB p65 in the liver was determined by Western blot. Quantitative real-time was used to determine the mRNA expression of glutamate-cysteine ligase catalytic subunit(GCLC), glutamate-cysteine ligase regulatory subunit(GCLM), heme oxygenase-1(HO-1), and NAD(P)H dehydrogenase quinone 1(NQO-1) in the liver to explore the mechanism of ESP in improving APAP-induced liver damage in mice. As revealed by results, compared with the model group, the ESP groups showed improved liver pathological damage, decreased ALT and AST levels in the serum and MDA and MPO content in the liver, increased GSH, SOD, CAT, and T-AOC in the liver, reduced TNF-α and IL-6 levels in the serum, down-regulated expression of Keap1 in the liver cytoplasm and NF-κB p65 in the liver nucleus, up-regulated expression of Nrf2 in the liver nucleus, insignificant change in TLR4 expression, and elevated relative mRNA expression levels of antioxidant genes GCLC, GCLM, HO-1, and NQO-1. ESP can reduce the oxidative damage and inflammation caused by APAP, and the mechanism may be related to the Keap1/Nrf2 signaling pathway and the signal transduction factors on the TLR4/NF-κB p65 pathway.
Acetaminophen/toxicity*
;
Animals
;
Antioxidants/pharmacology*
;
Glutamate-Cysteine Ligase/pharmacology*
;
Glutathione
;
Interleukin-6/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Medicine, Tibetan Traditional
;
Mice
;
NF-E2-Related Factor 2/metabolism*
;
NF-kappa B/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
;
Superoxide Dismutase/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
8.Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options.
Xiaopeng CAI ; Huiqiang CAI ; Jing WANG ; Qin YANG ; Jun GUAN ; Jingwen DENG ; Zhi CHEN
Journal of Zhejiang University. Science. B 2022;23(4):265-285
Acetaminophen, also known as N-acetyl-p-aminophenol (APAP), is commonly used as an antipyretic and analgesic agent. APAP overdose can induce hepatic toxicity, known as acetaminophen-induced liver injury (AILI). However, therapeutic doses of APAP can also induce AILI in patients with excessive alcohol intake or who are fasting. Hence, there is a need to understand the potential pathological mechanisms underlying AILI. In this review, we summarize three main mechanisms involved in the pathogenesis of AILI: hepatocyte necrosis, sterile inflammation, and hepatocyte regeneration. The relevant factors are elucidated and discussed. For instance, N-acetyl-p-benzoquinone imine (NAPQI) protein adducts trigger mitochondrial oxidative/nitrosative stress during hepatocyte necrosis, danger-associated molecular patterns (DAMPs) are released to elicit sterile inflammation, and certain growth factors contribute to liver regeneration. Finally, we describe the current potential treatment options for AILI patients and promising novel strategies available to researchers and pharmacists. This review provides a clearer understanding of AILI-related mechanisms to guide drug screening and selection for the clinical treatment of AILI patients in the future.
Acetaminophen/toxicity*
;
Analgesics, Non-Narcotic/toxicity*
;
Animals
;
Chemical and Drug Induced Liver Injury/pathology*
;
Chemical and Drug Induced Liver Injury, Chronic/pathology*
;
Humans
;
Inflammation/metabolism*
;
Liver/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Necrosis/pathology*
9.Preparation of salvianolic acid B, tanshinone Ⅱ_A, and glycyrrhetinic acid lipid emulsion and its protective effect against acute liver injury induced by acetaminophen.
Xiu-Rong ZHANG ; Tao LIN ; Xiu-Li WANG ; Xiao-Jie WANG ; Heng GU
China Journal of Chinese Materia Medica 2022;47(17):4634-4642
Salvianolic acid B(Sal B), tanshinone Ⅱ_A(TSN Ⅱ_A), and glycyrrhetinic acid(GA) lipid emulsion(GTS-LE) was prepared by the high-speed dispersion method combined with ultrasonic emulsification.The preparation process of the emulsion was optimized by single-factor method and D-optimal method with appearance, centrifugal stability, and particle size of the emulsion as evalua-tion indexes, followed by verification.In vitro release of Sal B, TSN Ⅱ_A, and GA in GTS-LE was performed by reverse dialysis.In vivo pharmacokinetic evaluation was carried out in mice.The acute liver injury model was induced by acetaminophen.The effect of oral GTS-LE on the acute liver injury was investigated by serum liver function indexes and pathological changes in liver tissues of mice.The results showed that under the optimal preparation process, the average particle size of GTS-LE was(145.4±9.25) nm and the Zeta potential was(-33.6±1.45) mV.The drug-loading efficiencies of Sal B, TSN Ⅱ_A, and GA in GTS-LE were above 95%, and the drug release in vitro conformed to the Higuchi equation.The pharmacokinetic results showed that the C_(max) of Sal B, TSN Ⅱ_A, and GA in GTS-LE was 3.128, 2.7, and 2.85 times that of the GTS-S group, and AUC_(0-t) of Sal B, TSN Ⅱ_A, and GA in GTS-LE was 3.09, 2.23, and 1.9 times that of the GTS-S group.After intragastric administration of GTS-LE, the activities of alanine aminotransferase and aspartate aminotransferase were significantly inhibited, the content of malondialdehyde was reduced, and the structure of hepatocytes recovered to normal.In conclusion, GTS-LE can delay the release of Sal B and promote the release of TSN Ⅱ_A and GA.The encapsulation of three drug components in the emulsion can improve the oral bioavailability to varying degrees and can effectively prevent the acute liver injury caused by acetaminophen.
Abietanes/therapeutic use*
;
Acetaminophen/therapeutic use*
;
Alanine Transaminase/metabolism*
;
Animals
;
Antipyretics/therapeutic use*
;
Aspartate Aminotransferases/metabolism*
;
Benzofurans/therapeutic use*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Depsides/therapeutic use*
;
Emulsions
;
Glycyrrhetinic Acid/therapeutic use*
;
Liver/drug effects*
;
Malondialdehyde
;
Mice
10.Schisandrin C improves acetaminophen-induced liver injury in mice by regulating Nrf2 signaling pathway.
Wen-Zhang DAI ; Zhao-Fang BAI ; Ting-Ting HE ; Xiao-Yan ZHAN ; Qiang LI ; Jing ZHAO ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(19):5299-5305
Excess acetaminophen(APAP) can be converted by the cytochrome P450 system to the toxic metabolite N-acetyl-p-benzoquinoneimine(NAPQI), which consumes glutathione(GSH). When GSH is depleted, NAPQI covalently binds with proteins, inducing mitochondrial dysfunction and oxidative stress and thereby leading to hepatotoxicity. Schisandrin C(SinC) is a dibenzocyclooctadiene derivative isolated from Schisandra chinensis. Although there is some evidence showing that SinC has hepatoprotective activity, its protective effect and mechanism on APAP-induced liver injury remain unclear. In this paper, an acute liver injury mouse model was established by intraperitoneal injection of APAP at a dose of 400 mg·kg~(-1) to evaluate the effect of SinC administration on the APAP-induced liver injury and its mechanism through an animal experiment. At the same time, a potential candidate drug was provi-ded for traditional Chinese medicine(TCM) prevention and treatment of overdose APAP-induced liver injury. In the APAP-induced liver injury mouse model, we found that SinC can relieve hepatic histopathological lesions and significantly reduce the activities of alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP). It was also capable of increasing the content of GSH and superoxide dismutase(SOD) and decreasing the levels of total bilirubin(TBIL), direct bilirubin(DBIL), malondialdehyde(MDA), interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). Further analysis showed that SinC decreased the content of CYP2 E1 in liver tissues at protein and mRNA levels and increased nuclear factor erythroid 2-related factor 2(Nrf2) and the expression of its downstream targets(including HO-1, NQO1 and GCLC). Taken together, the above results indicate that SinC can alleviate APAP-induced liver injury by reducing the expression of CYP2 E1, suppressing apoptosis, improving inflammatory response and activating the Nrf2 signaling pathway to inhibit oxidative stress.
Mice
;
Animals
;
Acetaminophen/toxicity*
;
NF-E2-Related Factor 2/metabolism*
;
Chemical and Drug Induced Liver Injury/pathology*
;
Chemical and Drug Induced Liver Injury, Chronic/pathology*
;
Liver
;
Signal Transduction
;
Oxidative Stress
;
Bilirubin/metabolism*


Result Analysis
Print
Save
E-mail