1.Mechanism study of SIRT3 alleviating oxidative-stress injury in renal tubular cells by promoting mitochondrial biogenesis via regulating mitochondrial redox balance
Yaojun LIU ; Jun ZHOU ; Jing LIU ; Yunfei SHAN ; Huhai ZHANG ; Pan XIE ; Liying ZOU ; Lingyu RAN ; Huanping LONG ; Lunli XIANG ; Hong HUANG ; Hongwen ZHAO
Organ Transplantation 2026;17(1):86-94
Objective To elucidate the molecular mechanism of sirtuin-3 (SIRT3) in regulating mitochondrial biogenesis in human renal tubular epithelial cells. Methods Cells were stimulated with different concentrations of H2O2 and divided into four groups: control (NC), 50 μmol/L H2O2, 110 μmol/L H2O2 and 150 μmol/L H2O2. SIRT3 protein expression was then measured. SIRT3 was knocked down with siRNA, and cells were further assigned to five groups: control (NC), negative-control siRNA (NCsi), SIRT3-siRNA (siSIRT3), NCsi+H2O2, and siSIRT3+H2O2. After 24 h, cellular adenosine triphosphate (ATP) and mitochondrial superoxide anion (O2•−) levels were determined, together with mitochondrial expression of SIRT3, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), superoxide dismutase 2 (SOD2), acetylated-SOD2 and adenosine monophosphate activated protein kinase α1 (AMPKα1). Results The 110 and 150 μmol/L H2O2 decreased SIRT3 protein (both P<0.05). ATP and mitochondrial O2•− did not differ between NC and NCsi groups (both P>0.05). Compared to the NCsi group, the siSIRT3 group exhibited elevated O2•− level, decreased SIRT3 protein and increased expression levels of SOD2 and acetylated SOD2 protein (all P<0.05). Compared to the NCsi group, the NCsi+H2O2 group exhibited decreased cellular ATP levels, elevated mitochondrial O2•− levels, and reduced protein expression levels of SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 (all P<0.05). Compared with the siSIRT3 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, SOD2, TFAM, AMPKα1, PGC-1α and NRF1 protein expression levels and a decrease in acetylated SOD2 protein expression levels (all P<0.05). Compared with the NCsi+H2O2 group, the siSIRT3+H2O2 group showed a decrease in cellular ATP levels, an increase in mitochondrial O2•− levels, a decrease in SIRT3, AMPKα1, PGC-1α and NRF1, TFAM protein expression levels, and an increase in SOD2 and acetylated SOD2 protein expression levels (all P<0.05). Conclusions SIRT3 promotes mitochondrial biogenesis in tubular epithelial cells via the AMPK/PGC-1α/NRF1/TFAM axis, representing a key mechanism through which SIRT3 ameliorates oxidative stress-induced mitochondrial dysfunction.
2.Research progress on traditional Chinese medicine in the intervention of cerebral ischemia reperfusion injury by regulating NLRP3 inflammasome
Haoge CHENG ; Chenfei HE ; Chunlong RAN ; Chiyuan MA ; Xiangzhe LIU
China Pharmacy 2025;36(2):245-250
Cerebral ischemia reperfusion injury (CIRI) is a secondary brain injury that may occur in patients with ischemic stroke during the process of blood flow recovery. NOD-like receptor protein 3 (NLRP3) inflammasome plays an important role in the occurrence and development of CIRI. Regulating the activity of NLRP3 inflammasome can induce cell pyroptosis, induce neuroinflammatory response, promote macrophage/microglial polarization, destroy the blood-brain barrier, affect angiogenesis and neurogenesis, thereby affecting CIRI. Traditional Chinese medicine has obvious advantages in the treatment of CIRI. In this paper, with NLRP3 inflammasome as the core, we systematically elucidated the mechanism of action of traditional Chinese medicines on CIRI, and found that traditional Chinese medicines monomers (such as baicalin, polygalasaponin F) and traditional Chinese medicines compound formulas (such as Huangqi guizhi wuwu decoction, Yiqi shengqing formulation) can inhibit NLRP3 inflammasome activity, reduce inflammatory response and oxidative stress, and improve neuronal injury, thereby reducing CIRI.
3.Research progress on traditional Chinese medicine in the intervention of cerebral ischemia reperfusion injury by regulating NLRP3 inflammasome
Haoge CHENG ; Chenfei HE ; Chunlong RAN ; Chiyuan MA ; Xiangzhe LIU
China Pharmacy 2025;36(2):245-250
Cerebral ischemia reperfusion injury (CIRI) is a secondary brain injury that may occur in patients with ischemic stroke during the process of blood flow recovery. NOD-like receptor protein 3 (NLRP3) inflammasome plays an important role in the occurrence and development of CIRI. Regulating the activity of NLRP3 inflammasome can induce cell pyroptosis, induce neuroinflammatory response, promote macrophage/microglial polarization, destroy the blood-brain barrier, affect angiogenesis and neurogenesis, thereby affecting CIRI. Traditional Chinese medicine has obvious advantages in the treatment of CIRI. In this paper, with NLRP3 inflammasome as the core, we systematically elucidated the mechanism of action of traditional Chinese medicines on CIRI, and found that traditional Chinese medicines monomers (such as baicalin, polygalasaponin F) and traditional Chinese medicines compound formulas (such as Huangqi guizhi wuwu decoction, Yiqi shengqing formulation) can inhibit NLRP3 inflammasome activity, reduce inflammatory response and oxidative stress, and improve neuronal injury, thereby reducing CIRI.
4.Investigation and influencing factors of enteral nutrition support in elderly patients with ischemic stroke
Hong RAN ; Yan REN ; Xiaolu HUANG ; Xiaodan HAO
Journal of Public Health and Preventive Medicine 2025;36(1):123-126
Objective To explore enteral nutrition support and analyze its influencing factors in elderly patients with ischemic stroke. Methods A total of 328 patients with ischemic stroke in General Hospital of Western Theater Command were enrolled for nutritional screening between July 2020 and February 2024. Corresponding nutritional support plans were selected to investigate the compliance of patients with enteral nutrition support. Patients were divided into a standard group (n=140) and a non-standard group (n=97) based on whether their calorie intake met the standard. The effects of different clinical characteristics on enteral nutrition support were explored, and logistic analysis was used to analyze the influencing factors of non-standard enteral nutrition support. Results In the 328 patients with ischemic stroke, proportions of total parenteral nutrition support, total enteral nutrition support, and parenteral/enteral nutrition support were 25.30%, 27.74% and 46.95%, respectively. The proportions of vomiting or regurgitation, gastric residual volume >100 mL, mechanical ventilation and use of antibiotics >2 in the non-standard group were higher than those in the standard group (P<0.05). Logistic analysis showed that the above clinical characteristics were risk factors influencing patients with enteral nutrition support and parenteral/enteral nutrition support. Conclusion Vomiting or regurgitation , gastric residual volume, mechanical ventilation, and amount of antibiotics used are important influencing factors of enteral nutrition support in patients. Clinicians should pay attention to the above clinical characteristics.
5.Mechanism of Intervening with Diarrhea-predominant Irritable Bowel Syndrome in Rats with Spleen Deficiency by Xingpi Capsules Through Regulating 5-HT-RhoA/ROCK2 Pathway
Gang WANG ; Lingwen CUI ; Xiangning LIU ; Rongxin ZHU ; Mingyue HUANG ; Ying SUN ; Boyang JIAO ; Ran WANG ; Chun LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):60-69
ObjectiveTo investigate the efficacy of Xingpi capsules (XPC) in treating diarrhea-predominant irritable bowel syndrome (IBS-D) with spleen deficiency and elucidate its potential molecular mechanisms. MethodsA rat model of IBS-D with spleen deficiency was established by administering senna leaf in combination with restrained stress and swimming fatigue for 14 d. Ten specific pathogen free (SPF)-grade healthy rats were used as the normal control group. After successful modeling, SPF-grade rats were randomly divided into a model group, a pinaverium bromide group (1.5 mg·kg-1), and low- and high-dose XPC groups (0.135 and 0.54 g·kg-1), with 10 rats in each group. Rats in the normal control group and the model group were given distilled water by gavage, while the remaining groups were administered corresponding drug solutions by gavage once a day for 14 consecutive days. The rat body weights and fecal condition were observed every day, and the Bristol score was recorded. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of 5-hydroxytryptamine (5-HT) in serum and colon tissue. Transmission electron microscopy was used to observe the microvilli and tight junctions in the colon. The integrity of the colonic barrier, intestinal motility, and expression of related pathway proteins were evaluated by hematoxylin-eosin (HE) staining, immunohistochemistry, and Western blot. ResultsCompared with those in the normal control group, rats in the model group showed a significantly decreased body weight and increased diarrhea rate, diarrhea grade, and Bristol score (P<0.01). HE staining revealed incomplete colonic mucosa in the model group, with evident congestion and edema observed. Electron microscopy results indicated decreased density and integrity of the colonic barrier, shedding and disappearance of microvilli, and significant widening of tight junctions. The expression levels of colonic tight junction proteins Occludin and Claudin-5 were downregulated (P<0.01), and the levels of 5-HT in serum and colon tissue were elevated (P<0.01). The small intestine propulsion rate significantly increased (P<0.01), and the expression of contractile proteins Ras homolog family member A (RhoA) and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) in colon and phosphorylation of myosin light chain (MLC20) were upregulated (P<0.01). Compared with the model group, the treatment groups showed alleviated diarrhea, diarrhea-associated symptoms, and pathological manifestations of colon tissue to varying degrees. Specifically, high-dose XPC exhibited effectively relieved diarrhea, promoted recovery of colonic mucosal structure, significantly reduced congestion and edema, upregulated expression of Occludin and Claudin-5 (P<0.01), decreased levels of 5-HT in serum and colon tissue (P<0.05,P<0.01), significantly slowed small intestine propulsion rate (P<0.01), and significantly downregulated expression of contractile proteins RhoA and ROCK2 in colon and phosphorylation of MLC20 (P<0.05,P<0.01). ConclusionXPC effectively alleviates symptoms of spleen deficiency and diarrhea and regulates the secretion of brain-gut peptide. The characteristics of XPC are mainly manifested in alleviating IBS-D with spleen deficiency from the aspects of protecting intestinal mucosa and inhibiting smooth muscle contraction, and the mechanism is closely related to the regulation of the 5-HT-RhoA/ROCK2 pathway expression.
6.Predictive value of bladder deformation index for upper urinary tract damage in neurogenic bladder patients
Ran CHANG ; Huafang JING ; Yi GAO ; Siyu ZHANG ; Yue WANG ; Juan WU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):231-234
ObjectiveTo assess the predictive value of the bladder deformation index (BDI) in determining upper urinary tract (UUT) damage among patients with neurogenic bladder (NB). MethodsClinical data of 132 NB patients admitted to Beijing Bo'ai Hospital from January, 2015 to December, 2018 were retrospectively analyzed. Patients were divided into UUT damage group and normal UUT group according to the presence or absence of hydronephrosis. The demographics, biochemical parameters and video-urodynamics (VUDS) findings were collected, and BDI was calculated. Receiver operating characteristic (ROC) curves were utilized to evaluate the predictive capability. ResultsThere were 54 patients in UUT damage group and 33 in normal UUT group. The course of disease, creatinine level and BDI were siginificantly different between two groups (P < 0.05), while the area under the curve were 0.686, 0.836 and 0.928, respectively. ConclusionCourse of disease, creatinine level and BDI are associated with UUT damage in NB patients, and BDI demonstrates the highest sensitivity and specificity, which may play a role in diagnosis of UUT damage.
7.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
8.Research progress on the influencing factors of psychological distress in patients with coronary heart disease
Xiaotian DUAN ; Hongshi CAO ; Taiyu BI ; Haiyan WANG ; Songyu WANG ; Quantong ZHAO ; Ran WANG ; Chunjing WU
Sichuan Mental Health 2025;38(1):89-96
Coronary heart disease is a chronic and lifelong disease, which places a dual burden on the physiological and psychological well-being of patients, and can easily lead to psychological distress and affect their prognosis and quality of life. This article provides a systematic review, in which the current status, evaluation tools, influencing factors and intervention methods of psychological distress in patients with coronary heart disease are explored, aiming to provide key information beneficial for identifying and preventing psychological distress, and to improve the overall management and treatment effectiveness of coronary heart disease patients. In this paper, 18 articles were included, and the demographic, physiological, psychological and social factors affecting the psychological distress of patients with coronary heart disease were systematically analyzed, thus to provide a deeper understanding of psychological distress and offering references for formulating targeted intervention strategies.
9.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
10.Research advances in autoimmune pancreatitis with pancreatic exocrine insufficiency
Xiang AO ; Chenxiao LIU ; Xianda ZHANG ; Taojing RAN ; Chunhua ZHOU ; Duowu ZOU
Journal of Clinical Hepatology 2025;41(2):395-400
Autoimmune pancreatitis is a special type of chronic pancreatitis that can lead to abnormal pancreatic exocrine function in patients. Autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency has a complex pathogenesis, and there is limited research on this topic, leading to the lack of understanding of such patients in clinical practice. This article introduces the epidemiology of autoimmune pancreatitis, briefly describes the pathogenesis of pancreatic exocrine insufficiency caused by autoimmune pancreatitis, and summarizes the various detection methods for pancreatic exocrine function, nutritional assessments, lifestyle management, and drug therapy, in order to strengthen the understanding of autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency and improve the clinical diagnosis and treatment of pancreatic exocrine insufficiency.


Result Analysis
Print
Save
E-mail