1.Yishen Huashi Granules Protect Kidneys of db/db Mice via p38 MAPK Signaling Pathway
Kaidong ZHOU ; Sitong WANG ; Ge JIN ; Yanmo CAI ; Xin ZHOU ; Yunhua LIU ; Xinxue ZHANG ; Min ZHANG ; Zongjiang ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):58-68
ObjectiveTo explore the mechanism of Yishen Huashi granules in alleviating renal tubular epithelial cell injury and relieving diabetic kidney disease by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. MethodsThe db/db mice of 12 weeks old were randomly assigned into model , dapagliflozin (1.6 mg·kg-1), and Yishen Huashi granules (4.7 g·kg-1), and db/m mice were used as the control group. The general conditions of mice were observed, and fasting blood glucose and 24-h urinary protein and albumin-to-creatinine ratio (ACR) were measured at weeks 0 and 12 of administration. After 12 weeks of treatment, the levels of serum creatinine (SCr), blood urea (UREA), triglycerides (TG), total cholesterol (TC), and low density lipoprotein (LDL) were measured. The pathological changes in the renal tissue were observed by hematoxylin-eosin (HE) staining, Periodic acid-Schiff (PAS) staining, Mallory staining, and transmission electron microscopy. Real-time PCR was employed to determine the mRNA levels of monocyte chemotactic protein-1 (MCP-1) and CC chemokine receptor-2 (CCR2) in the renal tissue of mice. The immunohistochemical assay was employed to examine the expression of p38, phospho-p38 (p-p38), MCP-1, and CCR2 in the renal tissue of mice. Western blotting was employed to measure the protein levels of p-p38, p38, MCP-1, and CCR2 in the renal tissue of mice.HK-2 cells cultured in vitro were grouped as follows: negative control, high glucose(30 mmol·L-1), Yishen Huashi granule-containing serum, and SB203580. After 48 h of cell culture in each group, RNA were extracted and the levels of MCP-1, and CCR2 mRNA were determined by Real-time PCR,proteins were extracted and the levels of p38, p-p38, MCP-1, and CCR2 were determined by Western blot. ResultsThe in vivo experiments showed that before treatment, other groups had higher body weight, blood glucose level, 24 h urinary protein, and ACR than the control group (P<0.05,P<0.01). After 12 weeks of treatment, compared with the model group, the Yishen Huashi granules group showed improved general conditions, a decreasing trend in body weight, lowered levels of blood glucose, 24-h urinary protein, and ACR (P<0.01), reduced SCr and UREA (P<0.01), and declined levels of TC, TG, and LDL (P<0.05,P<0.01). Compared with the model group, the Yishen Huashi granules group showed alleviated damage and interstitial fibrosis in the renal tissue as well as reductions in glomerular foot process fusion and basement membrane thickening. Moreover, the Yishen Huashi granules group showed down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01), reduced positive expression of p-p38, MCP-1, and CCR2 (P<0.01), and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2 (P<0.05) in the renal tissue. The cell experiment showed that compared with the high glucose group, the Yishen Huashi granule-containing serum group showcased down-regulated mRNA levels of MCP-1 and CCR2 (P<0.01) and down-regulated protein levels of p-p38/p38, MCP-1, and CCR2(P<0.05,P<0.01). ConclusionYishen Huashi granules can regulate glucose-lipid metabolism, reduce 24 h urinary protein and ACR, improve the renal function, alleviate the renal tubule injury caused by high glucose, and protect renal tubule epithelial cells in db/db mice by reducing MCP-1/CCR2 activation via the p38 MAPK signaling pathway.
2.Fufang Kangjiaolv Capsules Treat Anxiety in Rat Model of Chronic Restraint Stress via Microbiota-gut-brain Axis
Wenxin FAN ; Tingyue JIANG ; Yu WANG ; Ge ZHANG ; Yifan LU ; Mengmeng LIU ; Jiayuan LI ; Renzhi MA ; Jinli SHI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):95-107
ObjectiveTo observe the intervention effect of Fufang Kangjiaolv capsules on anxiety-like behaviors in the rat model of chronic restraint stress (CRS) and explore the mechanism underlying the anti-anxiety effect via the microbiota-gut-brain axis. MethodsRats were assigned into blank, model, positive drug (diazepam, 1 mg·kg-1), and low-, medium-, and high-dose (0.75, 1.5, 3 g·kg-1, respectively) Fufang Kangjiaolv capsules groups. After 14 days of administration, the elevated plus maze test, open field test, light and dark box test, and marble burying test were performed. Hematoxylin-eosin staining was employed to observe the pathological changes in the hippocampus and colon of rats, and Nissl staining was conducted to observe the damage of hippocampal neurons. The gut microbiota was analyzed by 16S rRNA gene sequencing. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was employed to determine the mRNA levels of zonula occludens-1 (ZO-1) and occludin in the colon of rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the colon, serum, and hippocampus were determined by enzyme-linked immunosorbent assay. Western blot was employed to determine the protein levels of ZO-1, occludin, nuclear factor-κB p65 (NF-κB p65) in the colon tissue and NF-κB p65 and brain-derived neurotrophic factor (BDNF) in the hippocampal tissue. ResultsCompared with the blank group, the model group showed reductions in the time and frequency ratio of rats entering the elevated plus maze, the time and frequency of rats entering the central area of the open field, the time of entering the open box, the times of passing through the light and dark box, and the number of unburied beads (P<0.05, P<0.01). Compared with the model group, Fufang Kangjiaolv capsules ameliorated the anxiety of the model rats to varying degrees, and the high-dose group had the best effect, with increases in the proportions of time and frequency of rats entering the open arm in the elevated plus maze (P<0.05), the number of rats entering the central area in the open field (P<0.05), the time of entering the open box, the times of passing through the light and dark boxes, and the number of unburied beads (P<0.01). Moreover, the high-dose group showed alleviated pathological damage of hippocampal neurons and colon. The results of 16S rRNA gene sequencing showed that the model group had increased relative abundance of Firmicutes, Deferribacterota, Romboutsia, and Phascolarctobacterium, while it had decreased relative abundance of Bavcteroidota and Lactobacillus. The drug administration groups showed increased relative abundance of Bavcteroidota, Bacteroides, norank f norank o Clostridia UCG-014, and Blautia and decreased relative abundance of Firmicutes and Deferribacterota. Compared with the blank group, the model group showed down-regulated protein and mRNA levels of ZO-1 and occludin in the colon (P<0.01), elevated levels of TNF-α, IL-6, and IL-β in the colon, serum, and hippocampus (P<0.01), up-regulated protein level of NF-κB p65 in the colon and hippocampus (P<0.01), and down-regulated protein level of BDNF in the hippocampus (P<0.05). Compared with the model group, high-dose Fufang Kangjiaolv capsules up-regulated the mRNA levels of ZO-1 and occludin in the colon (P<0.01), lowered the levels of TNF-α, IL-6, and IL-β in the colon, serum, and hippocampus (P<0.01), up-regulated the protein levels of ZO-1 (P<0.01) and occludin (P<0.05) in the colon, down-regulated the protein level of NF-κB p65 in the colon and hippocampus (P<0.05), and up-regulated the protein level of BDNF in the hippocampus. ConclusionFufang Kangjiaolv capsules can reduce the anxiety-like behaviors in the rat model of CRS by regulating the gut microbiota disturbance, up-regulating the expression of tight junction proteins in the colon, repairing intestinal mucosal mechanical barrier, and down-regulating NF-κB/BDNF signaling pathway, thereby reducing peripheral and central inflammation. This study proves the hypothesis that Fufang Kangjiaolv capsules play an anti-anxiety role via the microbiota-gut-brain axis, providing a new idea for further research.
3.Naoqingtong Decoction Ameliorates Kidney Damage in Spontaneously Hypertensive Rats via NLRP3 Inflammasomes
Jiaxin JU ; Caocao CHENG ; Teng GE ; Yalong KANG ; Fang GUAN ; Haifang WANG ; Juanjuan TAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):125-131
ObjectiveTo investigate the effect of Naoqingtong decoction (NQT) on the kidney damage and the inflammatory factors NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), cysteinyl aspartate-specific proteinase-1 (Caspase-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in spontaneously hypertensive rats (SHRs). MethodsTwenty-four SHRs were randomized into a model group, a low-dose (12.9 g·kg-1·d-1) NQT (NQT-L) group, a high-dose (25.8 g·kg-1·d-1) NQT group (NQT-H), and a captopril (CTP, 20 mg·kg-1·d-1) group, with 6 rats in each group. In addition, 6 homozygous male Wistar-Kyoto rats were used as the control group. The control and model groups were administrated with the same amount of normal saline by gavage for 8 weeks. General behaviors of rats were observed during the intervention period, and the blood pressure was measured periodically. At the end of intervention, the body mass was weighed, and both kidneys were collected and weighed for the calculation of the renal index. Hematoxylin-eosin staining was performed to observe the pathological changes in the kidney tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the expression levels of NLRP3, ASC, Caspase-1, IL-6, and TNF-α in the kidney tissue. ResultsDuring the experiment period, the control group had normal mental status, food intake, and activity, while the model group showed thinning of hair, loss of luster, reduced activity, loss of appetite, fecal adhesion, and irritability, and some of the skin had scratches or blood scabs. The above symptoms were alleviated to different degrees after 8 weeks of NQT administration. An intelligent non-invasive sphygmomanometer was used to measure the tail artery pressure of rats, which showed that the systolic and diastolic blood pressure of rats in the model group was higher than that in the control group (P<0.01). Compared with the model group, drug interventions lowered the systolic and diastolic blood pressure (P<0.05, P<0.01). Compared with the control group, the model group showed severe pathological damage in the kidney tissue, which was alleviated in each drug intervention group. Compared with the control group, the model group showed up-regulated expression levels of NLRP3, ASC, Caspase-1, IL-6, and TNF-α in the kidney tissue (P<0.05, P<0.01). Compared with the model group, the drug intervention groups showed down-regulated expression levels of NLRP3, ASC, Caspase-1, IL-6, and TNF-α in the kidney tissue (P<0.05, P<0.01). ConclusionNQT can lower the blood pressure in SHRs by inhibiting the activation of NLRP3 inflammasomes, suppressing renal inflammation, and ameliorating hypertensive kidney damage.
4.Bioinformatics and Animal Experiments Reveal Mechanism of Shouhui Tongbian Capsules in Treating Constipation
Yong LIANG ; Qimeng ZHANG ; Bin GE ; Yang ZHANG ; Yu SHI ; Yue LU ; Hongxi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):150-157
ObjectiveTo explore the mechanism of Shouhui Tongbian capsules in treating constipation based on the research foundation of its active components combined with network pharmacology and animal experiments. MethodsThe drug components were imported into SwissTargetPrediction to predict the targets of Shouhui Tongbian capsules, and constipation-related targets were collected from disease databases. A protein-protein interaction (PPI) network was constructed for the common targets shared by Shouhui Tongbian capsules and constipation to screen key targets, which was followed by gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. A "bioactive component-target-pathway" network was constructed, and the core components of Shouhui Tongbian capsules in treating constipation were screened based on the topological parameters of this network. Molecular docking was employed to predict the binding affinity of core components to key targets. A mouse model of constipation was constructed to screen the key pathways and targets of the drug intervention in constipation. ResultsThe PPI network revealed six key constipation-related targets: protein kinase B (Akt1), B-cell lymphoma-2 (Bcl-2), glycogen synthase kinase-3β (GSK-3β), cyclooxygenase-2 (PTGS2), estrogen receptor 1 (ESR1), and epidermal growth factor receptor (EGFR). The KEGG pathway analysis showed that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was the most enriched. The topological parameter analysis of the "bioactive component-target-pathway" network screened out the top 10 core components: auranetin, isosinensetin, naringin, diosmetin, quercetin, apigenin, luteolin, hesperidin, isorhapontigenin, and chrysophanol. Molecular docking results showed that the 10 core components had strong binding affinity with the 6 key targets. Animal experiments showed that after intervention with different doses of Shouhui Tongbian capsules, the time to the first black stool excretion was reduced and the fecal water content and small intestine charcoal propulsion rate of mice were improved. After treatment with Shouhui Tongbian capsules, the colonic mucosal injury and glandular arrangement were alleviated, and the muscle layer thickness was increased. Western blot results showed that Shouhui Tongbian capsules recovered the expression of apoptosis-related molecules mediated by the PI3K/Akt pathway in the colonic tissue of constipated mice. Terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) results showed that the cell apoptosis rate of the colon significantly reduced after intervention with Shouhui Tongbian capsules. ConclusionThe results of network pharmacology and animal experiments confirmed that Shouhui Tongbian capsules can treat constipation through multiple targets and pathways. The capsules can effectively intervene in loperamide-induced constipation in mice by regulating the constipation indicators and reducing cell apoptosis in the colon tissue via activating the PI3K/Akt signaling pathway.
5.Erk Signaling Pathway in Striatal D2-MSNs: an Essential Pathway for Exercise-induced Improvement in Parkinson’s Disease
Bo GAO ; Yi-Ning LAI ; Yi-Tong GE ; Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):61-71
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc), primarily manifesting as motor dysfunctions such as resting tremor, muscle rigidity, and bradykinesia. According to the classical model of basal ganglia motor control, approximately half of the medium spiny neurons (MSNs) in the striatum are D1-MSNs, which constitute the direct pathway. These neurons express D1-dopamine receptor (D1R) and substance P, and they mainly participate in the selection, initiation, and execution of movements. The other half are D2-MSNs, which constitute the indirect pathway. These neurons express D2-dopamine receptor (D2R) and adenosine 2A receptors and are involved in inhibiting unnecessary movements or terminating ongoing movements, thereby adjusting movement sequences to perform more precise motor behaviors. The direct pathway in the striatum modulates the activity of motor cortex neurons by exciting D1-MSNs through neurotransmitters such as glutamate (Glu), allowing the motor cortex to send signals more freely to the motor system, thus facilitating the generation and execution of specific motor behaviors. Studies using D1-Cre and D2-Cre mice with neurons labeled for D1R and D2R have shown that both types of neurons are involved in the execution of movements, with D1-MSNs participating in movement initiation and D2-MSNs in inhibiting actions unrelated to the target movement. These findings suggest that the structural and functional plasticity of D1-MSNs and D2-MSNs in the basal ganglia circuitry enables motor learning and behavioral regulation. Additionally, when SNpc DA neurons begin to degenerate, D1-MSNs are initially affected but do not immediately cause motor impairments. In contrast, when D2-MSNs undergo pathological changes, they are first activated by upstream projecting neurons, leading to the inhibition of most motor behaviors and resulting in motor dysfunction. Therefore, it is hypothesized that motor impairments such as bradykinesia and initiation difficulties are more closely related to the functional activity of D2-MSNs. The extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) signaling pathway has been identified as a critical modulator in the pathophysiology of PD. Recent findings indicate that Erk/MAPK signaling pathway can mediate DA and Glu signaling in the central nervous system, maintaining normal functional activity of striatal MSNs and influencing the transmission of motor control signals. Within this complex regulatory network, the Erk/MAPK signaling pathway plays a key role in transmitting motor information to downstream neurons, regulating normal movements, avoiding unnecessary movements, and finely tuning motor behaviors. Our laboratory’s previous research found that 4 weeks of aerobic exercise intervention improved motor dysfunction in PD mice by inhibiting the Erk1/2 signaling upstream of striatal MSNs, primarily involving the Erk1/2 signaling in D2-MSNs rather than D1-MSNs. This review summarizes the neurobiological mechanisms of Erk/MAPK signaling pathway in D2-MSNs for the prevention and treatment of motor dysfunction in PD. By exploring the role of this signaling pathway in regulating motor abnormalities and preventing motor dysfunction in the central nervous system of PD, this review provides new theoretical perspectives for related mechanistic research and therapeutic strategies.
6.Rehmanniae Radix Iridoid Glycosides Protect Kidneys of Diabetic Mice by Regulating TGF-β1/Smads Signaling Pathway
Hongwei ZHANG ; Ming LIU ; Huisen WANG ; Wenjing GE ; Xuexia ZHANG ; Qian ZHOU ; Huani LI ; Suqin TANG ; Gengsheng LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):56-66
ObjectiveTo investigate the protective effect of Rehmanniae Radix iridoid glycosides (RIG) on the kidney tissue of streptozotocin (STZ)-induced diabetic mice and explore the underlying mechanism. MethodsTwelve of 72 male C57BL/6J mice were randomly selected as the normal group, and the remaining 60 mice were fed with a high-fat diet for six weeks combined with injection of 60 mg·kg-1 STZ for 4 days to model type 2 diabetes mellitus. The successfully modeled mice were randomized into model, metformin (250 mg·kg-1), catalpol (100 mg·kg-1), low-dose RIG (RIG-L, 200 mg·kg-1) and high-dose RIG (RIG-H, 400 mg·kg-1) groups (n=11). Mice in each group were administrated with corresponding drugs, while those in the normal group and model group were administrated with the same dose of distilled water by gavage once a day. After 8 weeks of intervention, an oral glucose tolerance test (OGTT) was performed, and the area under the curve (AUC) was calculated. After mice were sacrificed, both kidneys were collected. The body weight, kidney weight, and fasting blood glucose (FBG) were measured. Biochemical assays were performed to measure the serum levels of triglycerides (TG), total cholesterol (TC), serum creatinine (SCr), and blood urea nitrogen (BUN). Enzyme-linked immunosorbent assay (ELISA) was employed to determine the serum level of fasting insulin (FINS), and the insulin sensitivity index (ISI) and homeostatic model assessment for insulin resistance (HOMA-IR) were calculated. The pathological changes in kidneys of mice were observed by hematoxylin-eosin staining and Masson staining. The immunohistochemical method (IHC) was employed to assess the expression of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), transforming growth factor-β1 (TGF-β1), and collagen-3 (ColⅢ) in the kidney tissue. The protein levels of TGF-β1, cell signal transduction molecule 3 (Smad3), matrix metalloproteinase-9 (MMP-9), and ColⅢ in kidneys of mice were determined by Western blot. ResultsCompared with the normal group, the model group showcased decreased body weight and ISI (P<0.01), increased kidney weight, FBG, AUC, FINS, HOMA-IR, TC, TG, SCr, and BUN (P<0.01), glomerular hypertrophy, capsular space narrowing, and collagen deposition in the kidney, up-regulated protein levels of IL-1, IL-6, TNF-α, TGF-β1, ColⅢ, and Smad3 (P<0.01), and down-regulated protein level of MMP-9 (P<0.01) in the kidney tissue. Compared with the model group, the treatment groups had no significant difference in the body weight and decreased kidney weight (P<0.05, P<0.01). The FBG level declined in the RIG-H group after treatment for 4-8 weeks and in the metformin, catalpol, and RIG-L groups after treatment for 6-8 weeks (P<0.01). The AUC in the RIG-L, RIG-H, and metformin groups decreased (P<0.05, P<0.01). The levels of TC, SCr, and BUN in the serum of mice in each treatment group became lowered (P<0.05, P<0.01). The level of TG declined in the RIG-L, RIG-H, and metformin groups (P<0.05, P<0.01). The serum level of FINS declined in the catalpol, RIG-L, and metformin groups (P<0.01). Compared with the model group, the treatment groups showed decreased HOMA-IR (P<0.01), increased ISI (P<0.01), alleviated pathological changes in the kidney tissue, and down-regulated expression of IL-1 and TGF-β1. In addition, the protein levels of IL-6, TNF-α, and ColⅢ in the RIG-H and metformin groups and IL-6 and TNF-α in the RIG-L group were down-regulated (P<0.05, P<0.01), and the protein levels of IL-6, TNF-α, and ColⅢ in the catalpol group and ColⅢ in the RIG-L group showed a decreasing trend without statistical difference. The protein levels of TGF-β1, Smad3, and ColⅢ in the RIG-H and metformin groups were down-regulated (P<0.01). Compared with that in the model group, the protein level of MMP-9 was up-regulated in each treatment group (P<0.01). ConclusionRIG can improve the renal structure and function of diabetic mice by regulating the TGF-β1/Smads signaling pathway.
7.Chinese expert consensus on postoperative follow-up for non-small cell lung cancer (version 2025)
Lunxu LIU ; Shugeng GAO ; Jianxing HE ; Jian HU ; Di GE ; Hecheng LI ; Mingqiang KANG ; Fengwei TAN ; Fan YANG ; Qiang PU ; Kaican CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):281-290
Surgical treatment is one of the key approaches for non-small cell lung cancer (NSCLC). Regular postoperative follow-up is crucial for early detection and timely management of tumor recurrence, metastasis, or second primary tumors. A scientifically sound and reasonable follow-up strategy not only extends patient survival but also significantly improves quality of life, thereby enhancing overall prognosis. This consensus aims to build upon the previous version by incorporating the latest clinical research advancements and refining postoperative follow-up protocols for early-stage NSCLC patients based on different treatment modalities. It provides a scientific and practical reference for clinicians involved in the postoperative follow-up management of NSCLC. By optimizing follow-up strategies, this consensus seeks to promote the standardization and normalization of lung cancer diagnosis and treatment in China, helping more patients receive high-quality care and long-term management. Additionally, the release of this consensus is expected to provide insights for related research and clinical practice both domestically and internationally, driving continuous development and innovation in the field of postoperative management for NSCLC.
8.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
9.Mechanism of Xinnao shutong capsule alleviating cerebral ischemia-reperfusion injury in rats by regulating ferroptosis
Huani LI ; Changhe LIU ; Xiaoyan GUO ; Xin ZHONG ; Wei ZHANG ; Wenjing GE
China Pharmacy 2025;36(3):306-311
OBJECTIVE To study the mechanism of Xinnao shutong capsule alleviating cerebral ischemia reperfusion injury (CIRI) in rats by regulating the ferroptosis pathway. METHODS SD rats were randomly divided into sham operation group, model group, Xinnao shutong low-dose, high-dose group (220, 440 mg/kg), Ginkgo biloba leaves extract group (positive control, 150 mg/kg). Each group of rats was orally administered with the corresponding medication/normal saline for 7 consecutive days. Transient occlusion of the middle cerebral artery was adopted to induce the CIRI model; the samples were taken 24 h after the operation; the cerebral infarction area of rats was detected, and the cerebral infarction rate was calculated. The pathological changes of brain tissues were observed, and the levels of lipid peroxide (LPO), malondialdehyde (MDA) and glutathione (GSH) in cerebral tissue were detected; mRNA and protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1) and glutathione peroxidase 4 (GPX4) were all detected in cerebral tissue of rats. RESULTS Compared with model group, the cerebral infarction rate, the content of total iron in cerebral tissue and serum level of LPO (except for Ginkgo biloba leaves extract group and Xinnao shutong low-dose group) were all decreased significantly in G. biloba leaves extract group and Xinnao shutong groups (P<0.05 or P<0.01); the serum level of GSH, the protein and mRNA expressions of Nrf2, HO-1 and GPX4 were all increased significantly (P<0.05 or P<0.01). The pathological damage to brain tissue was reduced, the number of nerve cells increased, the edema was alleviated, and the nuclear membrane was flattened. CONCLUSIONS Xinnao shutong capsule can inhibit ferroptosis and reduce CIRI, the mechanism of which may be associated with the activation of the Nrf2/HO-1/GPX4 signaling pathway.
10.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.

Result Analysis
Print
Save
E-mail