1.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
2.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
3.The joint analysis of heart health and mental health based on continual learning.
Hongxiang GAO ; Zhipeng CAI ; Jianqing LI ; Chengyu LIU
Journal of Biomedical Engineering 2025;42(1):1-8
Cardiovascular diseases and psychological disorders represent two major threats to human physical and mental health. Research on electrocardiogram (ECG) signals offers valuable opportunities to address these issues. However, existing methods are constrained by limitations in understanding ECG features and transferring knowledge across tasks. To address these challenges, this study developed a multi-resolution feature encoding network based on residual networks, which effectively extracted local morphological features and global rhythm features of ECG signals, thereby enhancing feature representation. Furthermore, a model compression-based continual learning method was proposed, enabling the structured transfer of knowledge from simpler tasks to more complex ones, resulting in improved performance in downstream tasks. The multi-resolution learning model demonstrated superior or comparable performance to state-of-the-art algorithms across five datasets, including tasks such as ECG QRS complex detection, arrhythmia classification, and emotion classification. The continual learning method achieved significant improvements over conventional training approaches in cross-domain, cross-task, and incremental data scenarios. These results highlight the potential of the proposed method for effective cross-task knowledge transfer in ECG analysis and offer a new perspective for multi-task learning using ECG signals.
Humans
;
Electrocardiography/methods*
;
Mental Health
;
Algorithms
;
Signal Processing, Computer-Assisted
;
Machine Learning
;
Arrhythmias, Cardiac/diagnosis*
;
Cardiovascular Diseases
;
Neural Networks, Computer
;
Mental Disorders
4.A multi-constraint representation learning model for identification of ovarian cancer with missing laboratory indicators.
Zihan LU ; Fangjun HUANG ; Guangyao CAI ; Jihong LIU ; Xin ZHEN
Journal of Southern Medical University 2025;45(1):170-178
OBJECTIVES:
To evaluate the performance of a multi-constraint representation learning classification model for identifying ovarian cancer with missing laboratory indicators.
METHODS:
Tabular data with missing laboratory indicators were collected from 393 patients with ovarian cancer and 1951 control patients. The missing ovarian cancer laboratory indicator features were projected to the latent space to obtain a classification model using the representational learning classification model based on discriminative learning and mutual information coupled with feature projection significance score consistency and missing location estimation. The proposed constraint term was ablated experimentally to assess the feasibility and validity of the constraint term by accuracy, area under the ROC curve (AUC), sensitivity, and specificity. Cross-validation methods and accuracy, AUC, sensitivity and specificity were also used to evaluate the discriminative performance of this classification model in comparison with other interpolation methods for processing of the missing data.
RESULTS:
The results of the ablation experiments showed good compatibility among the constraints, and each constraint had good robustness. The cross-validation experiment showed that for identification of ovarian cancer with missing laboratory indicators, the AUC, accuracy, sensitivity and specificity of the proposed multi-constraints representation-based learning classification model was 0.915, 0.888, 0.774, and 0.910, respectively, and its AUC and sensitivity were superior to those of other interpolation methods.
CONCLUSIONS
The proposed model has excellent discriminatory ability with better performance than other missing data interpolation methods for identification of ovarian cancer with missing laboratory indicators.
Female
;
Humans
;
Ovarian Neoplasms/diagnosis*
;
Machine Learning
;
ROC Curve
5.Construction of recognition models for subthreshold depression based on multiple machine learning algorithms and vocal emotional characteristics.
Meimei CHEN ; Yang WANG ; Huangwei LEI ; Fei ZHANG ; Ruina HUANG ; Zhaoyang YANG
Journal of Southern Medical University 2025;45(4):711-717
OBJECTIVES:
To construct vocal recognition classification models using 6 machine learning algorithms and vocal emotional characteristics of individuals with subthreshold depression to facilitate early identification of subthreshold depression.
METHODS:
We collected voice data from both normal individuals and participants with subthreshold depression by asking them to read specifically chosen words and texts. From each voice sample, 384-dimensional vocal emotional feature variables were extracted, including energy feature, Meir frequency cepstrum coefficient, zero cross rate feature, sound probability feature, fundamental frequency feature, difference feature. The Recursive Feature Elimination (RFE) method was employed to select voice feature variables. Classification models were then built using the machine learning algorithms Adaptive Boosting (AdaBoost), Random Forest (RF), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Lasso Regression (LRLasso), and Support Vector Machine (SVM), and the performance of these models was evaluated. To assess generalization capability of the models, we used real-world speech data to evaluate the best speech recognition classification model.
RESULTS:
The AdaBoost, RF, and LDA models achieved high prediction accuracies of 100%, 100%, and 93.3% on word-reading speech test set, respectively. In the text-reading speech test set, the accuracies of the AdaBoost, RF, and LDA models were 90%, 80%, and 90%, respectively, while the accuracies of the other 3 models were all below 80%. On real-world word-reading and text-reading speech data, the classification models using AdaBoost and Random Forest still achieved high predictive accuracies (91.7% and 80.6% for AdaBoost and 86.1% and 77.8% for Random, respectively).
CONCLUSIONS
Analyzing vocal emotional characteristics allows effective identification of individuals with subthreshold depression. The AdaBoost and RF models show excellent performance for classifying subthreshold depression individuals, and may thus potentially offer valuable assistance in the clinical and research settings.
Humans
;
Machine Learning
;
Emotions
;
Depression/diagnosis*
;
Algorithms
;
Voice
;
Support Vector Machine
;
Male
;
Female
6.A machine learning approach for the diagnosis of obstructive sleep apnoea using oximetry, demographic and anthropometric data.
Zhou Hao LEONG ; Shaun Ray Han LOH ; Leong Chai LEOW ; Thun How ONG ; Song Tar TOH
Singapore medical journal 2025;66(4):195-201
INTRODUCTION:
Obstructive sleep apnoea (OSA) is a serious but underdiagnosed condition. Demand for the gold standard diagnostic polysomnogram (PSG) far exceeds its availability. More efficient diagnostic methods are needed, even in tertiary settings. Machine learning (ML) models have strengths in disease prediction and early diagnosis. We explored the use of ML with oximetry, demographic and anthropometric data to diagnose OSA.
METHODS:
A total of 2,996 patients were included for modelling and divided into test and training sets. Seven commonly used supervised learning algorithms were trained with the data. Sensitivity (recall), specificity, positive predictive value (PPV) (precision), negative predictive value, area under the receiver operating characteristic curve (AUC) and F1 measure were reported for each model.
RESULTS:
In the best performing four-class model (neural network model predicting no, mild, moderate or severe OSA), a prediction of moderate and/or severe disease had a combined PPV of 94%; one out of 335 patients had no OSA and 19 had mild OSA. In the best performing two-class model (logistic regression model predicting no-mild vs. moderate-severe OSA), the PPV for moderate-severe OSA was 92%; two out of 350 patients had no OSA and 26 had mild OSA.
CONCLUSION
Our study showed that the prediction of moderate-severe OSA in a tertiary setting with an ML approach is a viable option to facilitate early identification of OSA. Prospective studies with home-based oximeters and analysis of other oximetry variables are the next steps towards formal implementation.
Humans
;
Oximetry/methods*
;
Sleep Apnea, Obstructive/diagnosis*
;
Male
;
Female
;
Middle Aged
;
Machine Learning
;
Polysomnography
;
Adult
;
Anthropometry
;
ROC Curve
;
Aged
;
Algorithms
;
Predictive Value of Tests
;
Sensitivity and Specificity
;
Neural Networks, Computer
;
Demography
7.Population screening for acupuncture treatment of neck pain: a machine learning study.
Zhen GAO ; Mengjie CUI ; Haijun WANG ; Cheng XU ; Nixuan GU ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(4):405-412
OBJECTIVE:
To screen the population for acupuncture treatment of neck pain, using functional magnetic resonance imaging (fMRI) technology and based on machine learning algorithms.
METHODS:
Eighty patients with neck pain were recruited. Using FPX25 handheld pressure algometer, the tender points were detected in the areas with high-frequent onset of neck pain and high degree of acupoint sensitization. Acupuncture was delivered at 4 tender points with the lowest pain threshold, once every two days; and the treatment was given 3 times a week and for 2 consecutive weeks. The amplitude of low-frequency fluctuation (ALFF) of the brain before treatment was taken as a predictive feature to construct support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN) models to predict the responses of neck pain patients to acupuncture treatment. A longitudinal analysis of the ALFF features was performed before and after treatment to reveal the potential biological markers of the reactivity to the acupuncture therapy.
RESULTS:
The SVM model could successfully distinguish high responders (48 cases) and low responders (32 cases) to acupuncture treatment, and its accuracy rate reached 82.5%. Based on the SVM model, the ALFF values of 4 brain regions were identified as the consistent predictive features, including the right middle temporal gyrus, the right superior occipital gyrus, and the bilateral posterior cingulate gyrus. In the patients with high acupuncture response, the ALFF value in the left posterior cingulate gyrus decreased after treatment (P<0.05), whereas in the patients with low acupuncture response, the ALFF value in the right superior occipital gyrus increased after treatment (P<0.01). The longitudinal functional connectivity (FC) analysis found that compared with those before treatment, the high responders showed the enhanced FC after treatment between the left posterior cingulate gyrus and various regions, including the bilateral Crus1 of the cerebellum, the right insula, the bilateral angular gyrus, the left medial superior frontal gyrus, and the left middle cingulate gyrus (GRF: corrected, voxel level: P<0.05, mass level: P<0.05). In contrast, the low responders exhibited the enhanced FC between the left posterior cingulate gyrus and the left Crus2 of the cerebellum, the left middle temporal gyrus, the right posterior cingulate gyrus, and the left angular gyrus; besides, FC was reduced in low responders between the left posterior cingulate gyrus and the right supramarginal gyrus (GRF: corrected, voxel level: P<0.05, mass level: P<0.05).
CONCLUSION
This study validates the practicality of pre-treatment ALFF feature prediction for acupuncture efficacy on neck pain. The therapeutic effect of acupuncture on neck pain is potentially associated with its impact on the default mode network, and then, alter the pain perception and emotional regulation.
Humans
;
Neck Pain/physiopathology*
;
Acupuncture Therapy
;
Female
;
Male
;
Adult
;
Middle Aged
;
Machine Learning
;
Magnetic Resonance Imaging
;
Young Adult
;
Brain/physiopathology*
;
Acupuncture Points
;
Aged
8.Current status and outlooks of acupuncture research driven by machine learning.
Sixian WU ; Linna WU ; Yi HU ; Zhijie XU ; Fan XU ; Hanbo YU ; Guiping LI
Chinese Acupuncture & Moxibustion 2025;45(4):421-427
The machine learning is used increasingly and widely in acupuncture prescription optimization, intelligent treatment and precision medicine, and has obtained a certain achievement. But, there are still some problems remained to be solved such as the poor interpretability of the model, the inconsistency of data quality of acupuncture research, and the clinical application of constructed models. Researches in future should focus on the acquisition of high-quality clinical and experimental data sets, take various machine learning algorithms as the basis, and construct professional models to solve various problems, so as to drive the high-quality development of acupuncture research.
Acupuncture Therapy/trends*
;
Machine Learning
;
Humans
;
Algorithms
9.Construction of an interpretable machine learning-based prediction model for the clinical effect on ischemic stroke in treatment with eye acupuncture combined with rehabilitation therapy.
Zhan ZHANG ; Delong JIANG ; Qingyan WANG ; Pengqin WANG
Chinese Acupuncture & Moxibustion 2025;45(5):559-567
OBJECTIVE:
To construct a prediction model for the clinical effect of eye acupuncture combined with rehabilitation therapy on ischemic stroke based on interpretable machine learning.
METHODS:
From January 1st, 2020 to October 1st, 2024, the clinical data of 470 patients with ischemic stroke were collected in the the Second Department of Encephalopathy Rehabilitation of the Affiliated Hospital of Liaoning University of TCM. The modified Barthel index (MBI) score before and after treatment was used to divide the patients into an effect group (291 cases) and a non-effect group (179 cases). Random forest and recursive feature elimination with cross-validation were combined to screen the predictors of the therapeutic effect of patients. Seven representative machine learning models with different principles were established according to the screening results. The predictive effect of the best model was evaluated by receiver operating characteristics (ROC), calibration, and clinical decision-making (DCA) curves. Finally, the Shapley additive explanation (SHAP) framework was used to interpret the prediction results of the best model.
RESULT:
①All the machine learning models presented the area under curve (AUC) to be above 85%. Of these models, the random forest model showed the best prediction ability, with AUC of 0.96 and the precision of 0.87. ②The prediction probability of calibration curve and the actual probability showed a good prediction consistency. ③The net benefit rate of DCA curve in the range of 0.1 to 1.0 was higher than the risk threshold, indicating a good effect of model. ④SHAP explained the characteristic values of variables that affected the prediction effect of the model, meaning, more days of treatment, lower MBI score before treatment, lower level of fibrinogen, shorter days of onset and younger age. These values demonstrated the better effect of eye acupuncture rehabilitation therapy.
CONCLUSION
The rehabilitation effect prediction model constructed in this study presents a good performance, which is conductive to assisting doctors in formulating targeted personalized rehabilitation programs, and identifying the benefit groups of eye acupuncture combined with rehabilitation therapy and finding the advantageous groups with clinical effect. It provides more ideas for the treatment of ischemic stroke with eye acupuncture combined with rehabilitation therapy.
Humans
;
Acupuncture Therapy
;
Machine Learning
;
Male
;
Female
;
Middle Aged
;
Ischemic Stroke/rehabilitation*
;
Aged
;
Stroke Rehabilitation
;
Adult
;
Eye
10.Research on machine-learning quantitative evaluative model of manual acupuncture manipulation based on three-dimensional motion tracking technology.
Jiayao WAN ; Binggan WANG ; Tianai HUANG ; Fan WANG ; Wenchao TANG
Chinese Acupuncture & Moxibustion 2025;45(9):1201-1208
OBJECTIVE:
To develop an objective quantitative evaluative model of manual acupuncture manipulation (MAM) using three-dimensional motion tracking technology and machine learning, so as to provide a new approach to the study on acupuncture and moxibustion education and manipulation standardization.
METHODS:
A total of 120 undergraduate students in the major of acupuncture-moxibustion and tuina were recruited. The Simi Motion Ver.8.5 motion tracking system was used to collect the data of three types of MAM, balanced reinforcing and reducing by twisting, reinforcing technique by twisting and reducing technique by twisting. Eight quantitative parameters covering movement performance and stability were established. With 5 types of machine learning algorithms (logistic regression, random forest, support vector machine, K-nearest neighbor, and decision tree) adopted, the evaluative model was constructed, and the feature importance analyzed.
RESULTS:
In the evaluation of different types of MAM, the support vector machine presented the best for the effects of the balanced reinforcing and reducing by twisting, and the reducing by twisting (accuracy rates were both 0.88); and the logistic regression algorithm showed the optimal performance in evaluating the reinforcing by twisting (1.00 of accuracy rate). Feature importance analysis revealed that twisting velocity was the dominant parameter for evaluating the balanced reinforcing-reducing manipulation. The reinforcing and reducing of acupuncture techniques were more dependent on the left-hand twisting parameters and comprehensive performances, respectively.
CONCLUSION
The objective evaluative model of MAM based on three-dimensional motion tracking technology and machine learning demonstrates a reliable evaluative performance, providing a new technical approach to standardized assessment in acupuncture and moxibustion education.
Humans
;
Male
;
Acupuncture Therapy/instrumentation*
;
Machine Learning
;
Female
;
Young Adult
;
Adult
;
Motion

Result Analysis
Print
Save
E-mail