1.The mechanism and research progress of T lymphocyte-mediated immune response in cardiac fibrosis remodeling.
Yong PENG ; Wen-Yue GAO ; Di QIN
Acta Physiologica Sinica 2025;77(1):95-106
This article reviews the role of different types of T lymphocyte subpopulations in pathological cardiac fibrosis remodeling. T helper 17 (Th17) cells are implicated in promoting the development of pathological cardiac fibrosis remodeling, while regulatory T (Treg) cells exert an immunosuppressive functions as negative regulators, attributing to their interleukin-10 (IL-10) secretion and functional phenotype. Th1 and Th2 cells are involved in different stages of the inflammatory response in pathological cardiac fibrosis remodeling, and their influence varies according to the pathological mechanisms of different cardiac diseases. In addition, CD8+ T cells regulate the activation and polarization of macrophages, promote the secretion of granzyme B, induce cardiomyocyte apoptosis, and aggravate cardiac fibrosis post-myocardial infarction. Considering the limitation of cytokine modulation in clinical therapy of heart failure, targeting T-cell co-stimulatory molecules emerges as a promising strategy for treating pathologic cardiac remodeling. Future research will explore chimeric antigen receptor modified T cells (CAR-T cells) technology and targeted regulation of Treg cells quantity and phenotype, for both of which have the potential to become effective methods for treating heart disease.
Humans
;
Fibrosis
;
T-Lymphocytes, Regulatory/immunology*
;
Ventricular Remodeling/immunology*
;
Myocardium/immunology*
;
Animals
;
Th17 Cells/immunology*
;
Interleukin-10/metabolism*
;
Th1 Cells/immunology*
;
Th2 Cells/immunology*
2.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
3.A cardiac magnetic resonance-based risk prediction model for left ventricular adverse remodeling following percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: a multi-center prospective study.
Zhenyan MA ; Xin A ; Lei ZHAO ; Hongbo ZHANG ; Ke LIU ; Yiqing ZHAO ; Geng QIAN
Journal of Southern Medical University 2025;45(4):669-683
OBJECTIVES:
To develop a risk prediction model for left ventricular adverse remodeling (LVAR) based on cardiac magnetic resonance (CMR) parameters in patients undergoing percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI).
METHODS:
A total of 329 acute STEMI patients undergoing primary PCI at 8 medical centers from January, 2018 to December, 2021 were prospectively enrolled. The parameters of CMR, performed at 7±2 days and 6 months post-PCI, were analyzed using CVI42 software. LVAR was defined as an increase >20% in left ventricular end-diastolic volume or >15% in left ventricular end-systolic volume at 6 months compared to baseline. The patients were randomized into training (n=230) and validation (n=99) sets in a 7∶3 ratio. In the training set, potential predictors were selected using LASSO regression, followed by univariate and multivariate logistic regression to construct a nomogram. Model performance was evaluated using receiver-operating characteristic (ROC) curves, area under the curve (AUC), calibration curves, and decision curve analysis.
RESULTS:
LVAR occurred in 100 patients (30.40%), who had a higher incidence of major adverse cardiovascular events than those without LVAR (58.00% vs 16.16%, P<0.001). Left ventricular global longitudinal strain (LVGLS; OR=0.76, 95% CI: 0.61-0.95, P=0.015) and left atrial active strain (LAAS; OR=0.78, 95% CI: 0.67-0.92, P=0.003) were protective factors for LVAR, while infarct size (IS; OR=1.05, 95% CI: 1.01-1.10, P=0.017) and microvascular obstruction (MVO; OR=1.26, 95% CI: 1.01-1.59, P=0.048) were risk factors for LVAR. The nomogram had an AUC of 0.90 (95% CI: 0.86-0.94) in the training set and an AUC of 0.88 (95% CI: 0.81-0.94) in the validation set.
CONCLUSIONS
LVGLS, LAAS, IS, and MVO are independent predictors of LVAR in STEMI patients following PCI. The constructed nomogram has a strong predictive ability to provide assistance for management and early intervention of LVAR.
Humans
;
Percutaneous Coronary Intervention
;
Prospective Studies
;
ST Elevation Myocardial Infarction/diagnostic imaging*
;
Ventricular Remodeling
;
Magnetic Resonance Imaging
;
Male
;
Female
;
Middle Aged
;
Risk Factors
;
Aged
;
Risk Assessment
4.Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.
Pingping LIN ; Hong CHEN ; Zekun CUI ; Boyang YU ; Junping KOU ; Fang LI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):54-63
Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro. High-performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS) characterized 23 main components of AN. AN significantly improved cardiac function in the TAC-induced mice. Furthermore, AN considerably reduced the serum levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), cardiac troponin T (CTn-T), and interleukin-6 (IL-6) and mitigated inflammatory cell infiltration. Post-AN treatment, TAC-induced heart size approached normal. AN decreased cardiomyocyte cross-sectional area and attenuated the upregulation of cardiac hypertrophy marker genes (ANP, BNP, and MYH7) in vivo and in vitro. Concurrently, AN alleviated collagen deposition in TAC-induced mice. AN also reduced the expression of fibrosis-related indicators (COL1A1 and COL3A1) and inhibited the activation of the transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog 3 (Smad3) pathway. Thus, AN improved TAC-induced cardiac remodeling. Moreover, AN downregulated p-dynamin-related protein (Drp1) (Ser616) expression and upregulated mitogen 2 (MFN-2) and optic atrophy 1 (OPA1) expression in vivo and in vitro, thereby restoring mitochondrial fusion and fission balance. In conclusion, AN improves cardiac remodeling by regulating mitochondrial dynamic balance, providing experimental data for the rational application of Chinese medicine prescriptions with AN as the main component in clinical practice.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Myocytes, Cardiac/metabolism*
;
Mice
;
Rats
;
Male
;
Mitochondrial Dynamics/drug effects*
;
Ventricular Remodeling/drug effects*
;
Astragalus Plant/chemistry*
;
Mice, Inbred C57BL
;
Rhizome/chemistry*
;
Panax notoginseng/chemistry*
;
Rats, Sprague-Dawley
;
Natriuretic Peptide, Brain/genetics*
;
Humans
;
Angiotensin II
;
Astragalus propinquus
5.Effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction.
Xin-Yi FAN ; Xiao-Qi WEI ; Yun-Yang ZHANG ; Hai-Yin PU ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(21):5838-5850
Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-β1(TGF-β1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), β-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-β1, α-SMA, Wnt3a, and β-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.
Mice
;
Animals
;
Transforming Growth Factor beta1/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
beta Catenin/metabolism*
;
Matrix Metalloproteinase 3/therapeutic use*
;
Powders
;
Ventricular Remodeling
;
Stroke Volume
;
Ventricular Function, Left
;
Myocardial Infarction/drug therapy*
;
Myocardium/pathology*
;
Heart Failure/metabolism*
;
Collagen/metabolism*
;
Creatine Kinase
;
Fibrosis
6.Guanxin V Relieves Ventricular Remodeling by Inhibiting Inflammation: Implication from Virtual Screening, Systematic Pharmacology, Molecular Docking, and Experimental Validation.
Bo LIANG ; Xiao-Xiao ZHANG ; Ning GU
Chinese journal of integrative medicine 2023;29(12):1077-1086
OBJECTIVE:
To reveal the anti-inflammatory mechanism of Guanxin V, which is prescribed for ventricular remodeling in clinical practice.
METHODS:
Guanxin V-, ventricular remodeling-, and inflammation-related targets were obtained through an integrated strategy of virtual screening and systematic pharmacology, and then the shared targets were visualised with a Venn diagram. Guanxin V network and the protein-protein interaction network were drawn, and enrichment analysis was conducted. Finally, the main results obtained from the integrated strategy were validated by molecular docking and in vivo experiments.
RESULTS:
A total of 251, 11,425, and 15,246 Guanxin V-, ventricular remodeling-, and inflammation-related targets were acquired, respectively. Then, 211 shared targets were considered to contribute to the mechanism of ventricular remodeling treated by Guanxin V. Guanxin network and the protein-protein interaction network were drawn, and enrichment analysis showed some cardiovascular-related biological processes and signaling pathways. Molecular docking revealed that the Guanxin V-derived compounds could align with key targets. Final in vivo experiments proved that Guanxin V reverses ventricular remodeling by inhibiting inflammation.
CONCLUSION
Guanxin V relieves ventricular remodeling by regulating inflammation, which provides new ideas for the anti-ventricular remodeling mechanism of Guanxin V.
Humans
;
Molecular Docking Simulation
;
Network Pharmacology
;
Ventricular Remodeling
;
Inflammation/drug therapy*
7.Effects of Compound Danshen Dripping Pills on Ventricular Remodeling and Cardiac Function after Acute Anterior Wall ST-Segment Elevation Myocardial Infarction (CODE-AAMI): Protocol for a Randomized Placebo-Controlled Trial.
Yu-Jie WU ; Bo DENG ; Si-Bo WANG ; Rui QIAO ; Xi-Wen ZHANG ; Yuan LU ; Li WANG ; Shun-Zhong GU ; Yu-Qing ZHANG ; Kai-Qiao LI ; Zong-Liang YU ; Li-Xing WU ; Sheng-Biao ZHAO ; Shuang-Lin ZHOU ; Yang YANG ; Lian-Sheng WANG
Chinese journal of integrative medicine 2023;29(12):1059-1065
BACKGROUND:
Ventricular remodeling after acute anterior wall ST-segment elevation myocardial infarction (AAMI) is an important factor in occurrence of heart failure which additionally results in poor prognosis. Therefore, the treatment of ventricular remodeling needs to be further optimized. Compound Danshen Dripping Pills (CDDP), a traditional Chinese medicine, exerts a protective effect on microcirculatory disturbance caused by ischemia-reperfusion injury and attenuates ventricular remodeling after myocardial infarction.
OBJECTIVE:
This study is designed to evaluate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function after AAMI on a larger scale.
METHODS:
This study is a multi-center, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The total of 268 patients with AAMI after primary percutaneous coronary intervention (pPCI) will be randomly assigned 1:1 to the CDDP group (n=134) and control group (n=134) with a follow-up of 48 weeks. Both groups will be treated with standard therapy of ST-segment elevation myocardial infarction (STEMI), with the CDDP group administrating 20 tablets of CDDP before pPCI and 10 tablets 3 times daily after pPCI, and the control group treated with a placebo simultaneously. The primary endpoint is 48-week echocardiographic outcomes including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), and left ventricular end-systolic volume index (LVESVI). The secondary endpoint includes the change in N terminal pro-B-type natriuretic peptide (NT-proBNP) level, arrhythmias, and cardiovascular events (death, cardiac arrest, or cardiopulmonary resuscitation, rehospitalization due to heart failure or angina pectoris, deterioration of cardiac function, and stroke). Investigators and patients are both blinded to the allocated treatment.
DISCUSSION
This prospective study will investigate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function in patients undergoing pPCI for a first AAMI. Patients in the CDDP group will be compared with those in the control group. If certified to be effective, CDDP treatment in AAMI will probably be advised on a larger scale. (Trial registration No. NCT05000411).
Humans
;
ST Elevation Myocardial Infarction/therapy*
;
Stroke Volume
;
Ventricular Remodeling
;
Prospective Studies
;
Microcirculation
;
Ventricular Function, Left
;
Myocardial Infarction/etiology*
;
Treatment Outcome
;
Percutaneous Coronary Intervention/adverse effects*
;
Heart Failure/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Randomized Controlled Trials as Topic
;
Multicenter Studies as Topic
8.Inhibitor of growth protein-2 silencing alleviates angiotensin Ⅱ-induced cardiac remodeling in mice by reducing p53 acetylation.
Zhengwang LIU ; Xiaotang QIU ; Hua YANG ; Xiaocui WU ; Wenjing YE
Journal of Southern Medical University 2023;43(7):1127-1135
OBJECTIVE:
To investigate the effect of inhibitor of growth protein-2 (Ing2) silencing on angiotensin Ⅱ (AngⅡ)-induced cardiac remodeling in mice and explore the underlying mechanism.
METHODS:
An adenoviral vector carrying Ing2 shRNA or empty adenoviral vector was injected into the tail vein of mice, followed 48 h later by infusion of 1000 ng · kg-1 · min-1 Ang Ⅱ or saline using a mini-osmotic pump for 42 consecutive days. Transthoracic echocardiography was used to assess cardiac geometry and function and the level of cardiac hypertrophy in the mice. Masson and WGA staining were used to detect myocardial fibrosis and cross-sectional area of cardiomyocytes, and myocardial cell apoptosis was detected with TUNEL assay. Western blotting was performed to detect myocardial expressions of cleaved caspase 3, ING2, collagen Ⅰ, Ac-p53(Lys382) and p-p53 (Ser15); Ing2 mRNA expression was detected using real-time PCR. Mitochondrial biogenesis, as measured by mitochondrial ROS content, ATP content, citrate synthase activity and calcium storage, was determined using commercial assay kits.
RESULTS:
The expression levels of Ing2 mRNA and protein were significantly higher in the mice with chronic Ang Ⅱ infusion than in saline-infused mice. Chronic infusion of AngⅡ significantly increased the left ventricular end-systolic diameter (LVESD) and left ventricular end-diastolic diameter (LVEDD) and reduced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the mice. Ing2 silencing obviously alleviated AngⅡ-induced cardiac function decline, as shown by decreased LVEDD and LVESD and increased LVEF and LVFS, improved myocardial mitochondrial damage and myocardial hypertrophy and fibrosis, and inhibited cardiomyocyte apoptosis. Chronic AngⅡ infusion significantly increased myocardial expression levels of Ac-p53(Lys382) and p-p53(Ser15) in the mice, and Ing2 silencing prior to AngⅡ infusion lessened AngⅡ- induced increase of Ac-p53(Lys382) without affecting p53 (ser15) expression.
CONCLUSION
Ing2 silencing can inhibit AngⅡ-induced cardiac remodeling and dysfunction in mice by reducing p53 acetylation.
Animals
;
Mice
;
Angiotensin II
;
Tumor Suppressor Protein p53
;
Acetylation
;
Stroke Volume
;
Ventricular Remodeling
;
Ventricular Function, Left
;
Myocytes, Cardiac
9.Erythropoietin promotes myocardial infarction repair in mice by improving the function of Sca-1+ stem cells.
Lin ZUO ; Duan-Duan LI ; Xiu-Xia MA ; Shan-Hui SHI ; Ding-Chao LYU ; Jing SHEN ; Wei-Fang ZHANG ; Er-He GAO ; Ji-Min CAO
Acta Physiologica Sinica 2023;75(1):36-48
Myocardial infarction (MI) is one of the leading causes of death in the world. With the improvement of clinical therapy, the mortality of acute MI has been significantly reduced. However, as for the long-term impact of MI on cardiac remodeling and cardiac function, there is no effective prevention and treatment measures. Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has anti-apoptotic and pro-angiogenetic effects. Studies have shown that EPO plays a protective role in cardiomyocytes in cardiovascular diseases, such as cardiac ischemia injury and heart failure. EPO has been demonstrated to protect ischemic myocardium and improve MI repair by promoting the activation of cardiac progenitor cells (CPCs). This study aimed to investigate whether EPO can promote MI repair by enhancing the activity of stem cell antigen 1 positive stem cells (Sca-1+ SCs). Darbepoetin alpha (a long-acting EPO analog, EPOanlg) was injected into the border zone of MI in adult mice. Infarct size, cardiac remodeling and performance, cardiomyocyte apoptosis and microvessel density were measured. Lin- Sca-1+ SCs were isolated from neonatal and adult mouse hearts by magnetic sorting technology, and were used to identify the colony forming ability and the effect of EPO, respectively. The results showed that, compared to MI alone, EPOanlg reduced the infarct percentage, cardiomyocyte apoptosis ratio and left ventricular (LV) chamber dilatation, improved cardiac performance, and increased the numbers of coronary microvessels in vivo. In vitro, EPO increased the proliferation, migration and clone formation of Lin- Sca-1+ SCs likely via the EPO receptor and downstream STAT-5/p38 MAPK signaling pathways. These results suggest that EPO participates in the repair process of MI by activating Sca-1+ SCs.
Animals
;
Mice
;
Ventricular Remodeling
;
Erythropoietin
;
Myocardial Infarction
;
Heart
;
Stem Cells
10.Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis.
Kai JIANG ; Yue XU ; Dandan WANG ; Feng CHEN ; Zizhuo TU ; Jie QIAN ; Sheng XU ; Yixiang XU ; John HWA ; Jian LI ; Hongcai SHANG ; Yaozu XIANG
Protein & Cell 2022;13(5):336-359
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular mortality in patients with diabetes mellitus but the protective mechanism remains elusive. Here we demonstrated that the SGLT2 inhibitor, Empagliflozin (EMPA), suppresses cardiomyocytes autosis (autophagic cell death) to confer cardioprotective effects. Using myocardial infarction (MI) mouse models with and without diabetes mellitus, EMPA treatment significantly reduced infarct size, and myocardial fibrosis, thereby leading to improved cardiac function and survival. In the context of ischemia and nutritional glucose deprivation where autosis is already highly stimulated, EMPA directly inhibits the activity of the Na+/H+ exchanger 1 (NHE1) in the cardiomyocytes to regulate excessive autophagy. Knockdown of NHE1 significantly rescued glucose deprivation-induced autosis. In contrast, overexpression of NHE1 aggravated the cardiomyocytes death in response to starvation, which was effectively rescued by EMPA treatment. Furthermore, in vitro and in vivo analysis of NHE1 and Beclin 1 knockout mice validated that EMPA's cardioprotective effects are at least in part through downregulation of autophagic flux. These findings provide new insights for drug development, specifically targeting NHE1 and autosis for ventricular remodeling and heart failure after MI in both diabetic and non-diabetic patients.
Animals
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glucose
;
Humans
;
Mice
;
Myocardial Infarction/metabolism*
;
Sodium-Glucose Transporter 2 Inhibitors/therapeutic use*
;
Ventricular Remodeling

Result Analysis
Print
Save
E-mail