1.Improved outcomes in E2A::HLF positive B-cell acute lymphoblastic leukemia by chimeric antigen receptor T cell therapy and BCL-2 inhibitor.
Shumin CHEN ; Ye LI ; Zheng WANG ; Lin FENG ; Yueping JIA ; Xiaodong MO ; Yu WANG ; Qian JIANG ; Xiaojun HUANG ; Yueyun LAI
Chinese Medical Journal 2023;136(11):1382-1384
2.Tools for large-scale genetic manipulation of yeast genome.
Jieyi LI ; Hanze TONG ; Yi WU
Chinese Journal of Biotechnology 2023;39(6):2465-2484
Large-scale genetic manipulation of the genome refers to the genetic modification of large fragments of DNA using knockout, integration and translocation. Compared to small-scale gene editing, large-scale genetic manipulation of the genome allows for the simultaneous modification of more genetic information, which is important for understanding the complex mechanisms such as multigene interactions. At the same time, large-scale genetic manipulation of the genome allows for larger-scale design and reconstruction of the genome, and even the creation of entirely new genomes, with great potential in reconstructing complex functions. Yeast is an important eukaryotic model organism that is widely used because of its safety and easiness of manipulation. This paper systematically summarizes the toolkit for large-scale genetic manipulation of the yeast genome, including recombinase-mediated large-scale manipulation, nuclease-mediated large-scale manipulation, de novo synthesis of large DNA fragments and other large-scale manipulation tools, and introduces their basic working principles and typical application cases. Finally, the challenges and developments in large-scale genetic manipulation are presented.
DNA
;
Gene Editing
;
Genetic Engineering
;
Saccharomyces cerevisiae/genetics*
;
Translocation, Genetic
3.Genetic analysis of a fetus with de novo 46,X,der(X)t(X;Y)(q26;q11).
Yongan WANG ; Rong ZHANG ; Ting YIN ; Zhiwei WANG ; Anshun ZHENG ; Leilei WANG
Chinese Journal of Medical Genetics 2023;40(5):593-597
OBJECTIVE:
To carry out prenatal genetic testing for a fetus with de novo 46,X,der(X)t(X;Y)(q26;q11).
METHODS:
A pregnant woman who had visited the Birth Health Clinic of Lianyungang Maternal and Child Health Care Hospital on May 22, 2021 was selected as the study subject. Clinical data of the woman was collected. Peripheral blood samples of the woman and her husband and umbilical cord blood of the fetus were collected and subjected to conventional G-banded chromosomal karyotyping analysis. Fetal DNA was also extracted from amniotic fluid sample and subjected to chromosomal microarray analysis (CMA).
RESULTS:
For the pregnant women, ultrasonography at 25th gestational week had revealed permanent left superior vena cava and mild mitral and tricuspid regurgitation. G-banded karyotyping analysis showed that the pter-q11 segment of the fetal Y chromosome was connected to the Xq26 of the X chromosome, suggesting a Xq-Yq reciprocal translocation. No obvious chromosomal abnormality was found in the pregnant woman and her husband. The CMA results showed that there was approximately 21 Mb loss of heterozygosity at the end of the long arm of the fetal X chromosome [arr [hg19] Xq26.3q28(133912218_154941869)×1], and 42 Mb duplication at the end of the long arm of the Y chromosome [arr [hg19] Yq11.221qter(17405918_59032809)×1]. Combined with the search results of DGV, OMIM, DECIPHER, ClinGen and PubMed databases, and based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the deletion of arr[hg19] Xq26.3q28(133912218_154941869)×1 region was rated as pathogenic, and the duplication of arr[hg19] Yq11.221qter(17405918_59032809)×1 region was rated as variant of uncertain significance.
CONCLUSION
The Xq-Yq reciprocal translocation probably underlay the ultrasonographic anomalies in this fetus, and may lead to premature ovarian insufficiency and developmental delay after birth. Combined G-banded karyotyping analysis and CMA can determine the type and origin of fetal chromosomal structural abnormalities as well as distinguish balanced and unbalanced translocations, which has important reference value for the ongoing pregnancy.
Humans
;
Child
;
Pregnancy
;
Female
;
Vena Cava, Superior
;
In Situ Hybridization, Fluorescence
;
Chromosome Aberrations
;
Karyotyping
;
Translocation, Genetic
;
Fetus
;
Prenatal Diagnosis/methods*
4.Clinical characteristics of 11 patients with chronic lymphocytic leukemia with t (14;19) (q32;q13).
Cheng Hua CUI ; Ya Nan CHANG ; Ji ZHOU ; Cheng Wen LI ; Hui Jun WANG ; Qi SUN ; Yu Jiao JIA ; Qing Hua LI ; Ting Yu WANG ; Lu Gui QIU ; Shu Hua YI
Chinese Journal of Hematology 2023;44(5):418-423
Objective: To analyze the clinicopathological characteristics of 11 cases of chronic lymphocytic leukemia (CLL) with t (14;19) (q32;q13) . Methods: The case data of 11 patients with CLL with t (14;19) (q32;q13) in the chromosome karyotype analysis results of the Blood Diseases Hospital, Chinese Academy of Medical Sciences from January 1, 2018, to July 30, 2022, were retrospectively analyzed. Results: In all 11 patients, t (14;19) (q32;q13) involved IGH::BCL3 gene rearrangement, and most of them were accompanied by +12 or complex karyotype. An immunophenotypic score of 4-5 was found in 7 patients and 3 in 4 cases. We demonstrated that CLLs with t (14;19) (q32;q13) had a mutational pattern with recurrent mutations in NOTCH1 (3/7), FBXW7 (3/7), and KMT2D (2/7). The very-high-risk, high-risk, intermediate-risk, and low-risk groups consisted of 1, 1, 6, and 3 cases, respectively. Two patients died, 8 survived, and 2 were lost in follow-up. Four patients had disease progression or relapse during treatment. The median time to the first therapy was 1 month. Conclusion: t (14;19) (q32;q13), involving IGH::BCL3 gene rearrangement, is a rare recurrent cytogenetic abnormality in CLL, which is associated with a poor prognosis.
Humans
;
Leukemia, Lymphocytic, Chronic, B-Cell/genetics*
;
Retrospective Studies
;
Translocation, Genetic
;
Chromosome Aberrations
;
Karyotyping
5.Clinicopathological features of gastric carcinomas with NTRK-rearrangement/amplification: report of four cases.
An Di XU ; Yao FU ; Xiao Hong PU ; Hong Yan WU ; Qi SUN ; Xiang Shan FAN
Chinese Journal of Pathology 2023;52(5):454-459
Objective: To investigate the clinicopathological, immunohistochemical and molecular genetic characteristics of gastric carcinoma with NTRK-rearrangement/amplification. Methods: The clinicopathological data of gastric carcinoma cases with NTRK-rearrangement/amplification diagnosed from January 2011 to September 2020 at the Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, China, were collected. The clinicopathological, immunophenotypic and molecular pathological features were analyzed. The relevant literature was reviewed. Results: There were 4 cases of gastric carcinoma with NTRK-rearrangement/amplification. All 4 patients were male, aged 57-67 years (average, 63 years). Tumor sizes ranged from 3.5 to 5.2 cm (average, 4.8 cm). All tumors were in the antrum. All 4 patients underwent radical gastrectomy and were followed up after the surgery. Morphologically, all tumors showed histological features with enteroblastic-differentiated gastric carcinoma. Tumor cells showed predominantly tubular/papillary architecture, with conspicuous vesicular nuclei and pale staining or transparent cytoplasm. Immunohistochemistry showed pan-TRK expression in all cases, with various degrees of positivity in the cytoplasm. All cases were subject to NTRK1/2/3 detection using fluorescence in situ hybridization. There were NTRK translocations in 2 cases and NTRK amplifications in 2 cases. These cases were further verified by RNAseq next generation sequencing which confirmed that NTRK1 gene translocation (TPM3-NTRK1) and NTRK2 gene translocation (NTRK2-SMCHD1) occurred in two cases, respectively. Conclusions: NTRK mutation occurs less frequently in gastric cancer. In this study, the cases mainly occur in the antrum. The morphology has the characteristics of enteroblastic differentiation. The tumors have unique histological, immunophenotypic and molecular characteristics, which require much attention from pathologists to effectively guide clinicians to choose the best treatment.
Humans
;
Male
;
Female
;
Receptor, trkA/genetics*
;
Stomach Neoplasms/surgery*
;
In Situ Hybridization, Fluorescence
;
Biomarkers, Tumor/genetics*
;
Translocation, Genetic
;
Carcinoma
;
Oncogene Proteins, Fusion/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
7.Analysis of a fetus with unbalanced translocation derived from a balanced t(6;14) maternal translocation.
Mengting ZHANG ; Hai XIAO ; Dong WU ; Hongdan WANG ; Yue GAO ; Qian ZHANG ; Fengyang WANG ; Tao WANG ; Shixiu LIAO
Chinese Journal of Medical Genetics 2023;40(2):230-233
OBJECTIVE:
To explore the genetic characteristics of a fetus with a high risk by maternal serum screening during the second trimester.
METHODS:
Genetic counseling was provided to the pregnant woman on March 22, 2020 at Henan Provincial People's Hospital. G-banded chromosomal karyotyping and array comparative genomic hybridization (aCGH) were carried out on the amniotic fluid sample and peripheral blood samples from the couple.
RESULTS:
The fetus and the pregnant woman were respectively found to have a 46,XX,der(6)t(6;14)(q27;q31.2) and 46,XX,t(6;14)(q27;q31.2) karyotype, whilst the husband was found to have a normal karyotype. aCGH analysis has identified a 6.64 Mb deletion at 6q26q27 and a 19.98 Mb duplication at 14q31.3q32.33 in the fetus, both of which were predicted to be pathogenic copy number variations. No copy number variation was found in the couple.
CONCLUSION
The unbalanced chromosome abnormalities in the fetus have probably derived from the balanced translocation carried by the pregnant woman. aCGH can help to determine the types of fetal chromosome abnormalities and site of chromosomal breakage, which may facilitate the prediction of fetal outcome and choice for subsequent pregnancies.
Pregnancy
;
Female
;
Humans
;
Comparative Genomic Hybridization
;
DNA Copy Number Variations
;
Translocation, Genetic
;
Chromosome Aberrations
;
Fetus
;
Prenatal Diagnosis
8.Genetic analysis of a case of B-acute lymphoblastic leukaemia with double Philadelphia chromosomes and double derivative chromosome 9s.
Xuxi ZHANG ; Youwen QIN ; Zhaoqiang FU ; Bingyao ZHANG ; Mengya SU ; Chuxian ZHAO ; Chun WANG
Chinese Journal of Medical Genetics 2023;40(2):242-246
OBJECTIVE:
To explore the genetic basis for a rare case of acute B-lymphocytic leukemia (B-ALL) with double Philadelphia chromosomes (Ph) and double derivative chromosome 9s [der(9)].
METHODS:
A patient with double Ph and double der(9) B-ALL who presented at Shanghai Zhaxin Intergrated Traditional Chinese and Western Medicine Hospital in June 2020 was selected as the subject. Bone marrow morphology, flow cytometry, G-banding karyotyping, fluorescence in situ hybridization (FISH), genetic testing and chromosomal microarray analysis (CMA) were used to analyze bone marrow samples from the patient at various stages.
RESULTS:
At initial diagnosis, the patient's bone marrow morphology and flow immunotyping have both supported the diagnosis of B-ALL. G-banded karyotyping of the patient indicated double Ph, in addition with hyperdiploid chromosomes involving translocations between chromosomes 9 and 22. BCR-ABL1 fusion gene was positive. Genetic testing at the time of recurrence revealed presence of a heterozyous c.944C>T variant in the kinase region of the ABL1 gene. FISH showed a signal for ABL1-BCR fusion on both chromosome 9s. CMA showed that the mosaicism homozygosity ratio of chromosome 9 was about 40%, and the mosaicism duplication ratio of chromosome 22 was about 43%.
CONCLUSION
Since both der(9) homologs were seen in 40% of cells, the possible mechanism for the double der(9) in this patient may be similar to that of double Ph, which might have resulted from non-disjunction during mitosis in the Ph chromosome-positive cell clone.
Humans
;
Philadelphia Chromosome
;
In Situ Hybridization, Fluorescence/methods*
;
China
;
Chromosome Aberrations
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Translocation, Genetic
;
Fusion Proteins, bcr-abl/genetics*
;
Chromosomes, Human, Pair 9/genetics*
9.Is t(11;14)(q13;q32) good or bad for newly diagnosed multiple myeloma?
Yang LIU ; Lu GAO ; Yueyun LAI ; Lei WEN ; Wenbing DUAN ; Fengrong WANG ; Ling MA ; Xiaojun HUANG ; Jin LU
Chinese Medical Journal 2023;136(1):96-98

Result Analysis
Print
Save
E-mail