1.The mechanism and research progress of T lymphocyte-mediated immune response in cardiac fibrosis remodeling.
Yong PENG ; Wen-Yue GAO ; Di QIN
Acta Physiologica Sinica 2025;77(1):95-106
This article reviews the role of different types of T lymphocyte subpopulations in pathological cardiac fibrosis remodeling. T helper 17 (Th17) cells are implicated in promoting the development of pathological cardiac fibrosis remodeling, while regulatory T (Treg) cells exert an immunosuppressive functions as negative regulators, attributing to their interleukin-10 (IL-10) secretion and functional phenotype. Th1 and Th2 cells are involved in different stages of the inflammatory response in pathological cardiac fibrosis remodeling, and their influence varies according to the pathological mechanisms of different cardiac diseases. In addition, CD8+ T cells regulate the activation and polarization of macrophages, promote the secretion of granzyme B, induce cardiomyocyte apoptosis, and aggravate cardiac fibrosis post-myocardial infarction. Considering the limitation of cytokine modulation in clinical therapy of heart failure, targeting T-cell co-stimulatory molecules emerges as a promising strategy for treating pathologic cardiac remodeling. Future research will explore chimeric antigen receptor modified T cells (CAR-T cells) technology and targeted regulation of Treg cells quantity and phenotype, for both of which have the potential to become effective methods for treating heart disease.
Humans
;
Fibrosis
;
T-Lymphocytes, Regulatory/immunology*
;
Ventricular Remodeling/immunology*
;
Myocardium/immunology*
;
Animals
;
Th17 Cells/immunology*
;
Interleukin-10/metabolism*
;
Th1 Cells/immunology*
;
Th2 Cells/immunology*
2.Porphyromonas gingivalis-induced glucose intolerance during periapical lesions requires its LPS throught a Th17 immune response.
Sylvie LÊ ; Emma STURARO ; Charlotte THOMAS ; Thibault CANCEILL ; Bertrand EKAMBI ; Nawel FELLOUAH ; Claude KNAUF ; Anne ABOT ; Christophe TENAILLEAU ; Benjamin DUPLOYER ; Pascale LOUBIERES ; Alison PROSPER ; Swann DIEMER ; Rémy BURCELIN ; Franck DIEMER ; Matthieu MINTY ; Vincent BLASCO-BAQUE
International Journal of Oral Science 2025;17(1):69-69
This study investigates the role of Interleukin 17 (IL-17) in exacerbating periapical lesions caused by Porphyromonas gingivalis (Pg) lipopolysaccharides (LPS) in the context of metabolic disease and its potential impact on glucose tolerance. Researchers developed a unique mouse model where mice were monocolonized with Pg to induce periapical lesions. After 1 month, they were fed a high-fat diet (HFD) for 2 months to simulate metabolic disease and oral microbiota dysbiosis. To explore the role of LPS from Pg, wild-type (WT) mice were challenged with purified LPS from Porphyromonas gingivalis, as well as with LPS-depleted and non-depleted Pg bacteria; IL-17 knockout (KO) mice were also included to assess the role of IL-17 signaling. The impact on bone lysis, periapical injury, glucose intolerance, and immune response was assessed. Results showed that in WT mice, the presence of LPS significantly worsened bone lysis, Th17 cell recruitment, and periapical injury. IL-17 KO mice exhibited reduced bone loss, glucose intolerance, and immune cell infiltration. Additionally, inflammatory markers in adipose tissue were lower in IL-17 KO mice, despite increased dysbiosis. The findings suggest that IL-17 plays a critical role in amplifying Pg-induced periapical lesions and systemic metabolic disturbances. Targeting IL-17 recruitment could offer a novel approach to improving glycemic control and reducing type 2 diabetes (T2D) risk in individuals with periapical disease.
Animals
;
Porphyromonas gingivalis/immunology*
;
Th17 Cells/immunology*
;
Lipopolysaccharides/immunology*
;
Mice
;
Glucose Intolerance/microbiology*
;
Interleukin-17/metabolism*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Diet, High-Fat
;
Periapical Diseases/microbiology*
;
Male
;
Dysbiosis
3.Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review.
Yao CHEN ; Ying XIE ; Xijie YU
Frontiers of Medicine 2025;19(3):474-492
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut-bone axis and the gut-brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
Humans
;
Gastrointestinal Microbiome/immunology*
;
Fatty Acids, Volatile/metabolism*
;
Osteoporosis, Postmenopausal/immunology*
;
Female
;
T-Lymphocytes, Regulatory/metabolism*
;
Th17 Cells/metabolism*
;
Dysbiosis/immunology*
;
Bone and Bones/metabolism*
4.Andrographolide sulfonate alleviates rheumatoid arthritis by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation.
Chunhong JIANG ; Xi ZENG ; Jia WANG ; Xiaoqian WU ; Lijuan SONG ; Ling YANG ; Ze LI ; Ning XIE ; Xiaomei YUAN ; Zhifeng WEI ; Yi GUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):480-491
Andrographolide sulfonate (AS) is a sulfonated derivative of andrographolide extracted from Andrographis paniculata (Burm.f.) Nees, and has been approved for several decades in China. The present study aimed to investigate the novel therapeutic application and possible mechanisms of AS in the treatment of rheumatoid arthritis. Results indicated that administration of AS by injection or gavage significantly reduced the paw swelling, improved body weights, and attenuated pathological changes in joints of rats with adjuvant-induced arthritis. Additionally, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in the serum and ankle joints were reduced. Bioinformatics analysis, along with the spleen index and measurements of IL-17 and IL-10 levels, suggested a potential relationship between AS and Th17 cells under arthritic conditions. In vitro, AS was shown to block Th17 cell differentiation, as evidenced by the reduced percentages of CD4+ IL-17A+ T cells and decreased expression levels of RORγt, IL-17A, IL-17F, IL-21, and IL-22, without affecting the cell viability and apoptosis. This effect was attributed to the limited glycolysis, as indicated by metabolomics analysis, reduced glucose uptake, and pH measurements. Further investigation revealed that AS might bind to hexokinase2 (HK2) to down-regulate the protein levels of HK2 but not glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or pyruvate kinase M2 (PKM2), and overexpression of HK2 reversed the inhibition of AS on Th17 cell differentiation. Furthermore, AS impaired the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signals in vivo and in vitro, which was abolished by the addition of lactate. In conclusion, AS significantly improved adjuvant-induced arthritis (AIA) in rats by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation.
Animals
;
Th17 Cells/immunology*
;
Diterpenes/pharmacology*
;
Arthritis, Rheumatoid/metabolism*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Glycolysis/drug effects*
;
Cell Differentiation/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Humans
;
Andrographis paniculata/chemistry*
;
Arthritis, Experimental/drug therapy*
;
Interleukin-17/immunology*
;
Signal Transduction/drug effects*
5.Functions of nucleolar complex associated 4 homolog in activated T cells.
Jiajun YIN ; Jie GUO ; Jianhua ZHANG
Chinese Journal of Biotechnology 2024;40(11):4057-4070
Nucleolar complex associated 4 homolog (NOC4L) is a key factor in ribosome biogenesis, and this study aims to investigate its roles in activated T cells from the perspective of translation regulation. Firstly, flow cytometry was employed to determine the expression levels of NOC4L in the CD4+ T cells under different conditions in the transgenic reporter mice expressing Noc4lmCherry. Subsequently, the expression of NOC4L along with cell proliferation was examined under Th1 and Th17 polarization conditions. Finally, in vitro experiments were conducted to identify the proteins interacting with NOC4L during the activation of Th1 and Th17 cells, on the basis of which the potential mechanisms of NOC4L were explored. The results showed that the expression level of NOC4L increased in activated CD4+ T cells, and the expression of NOC4L was closely associated with the proliferation and division of activated T cells. The in vitro experiments revealed interactions between NOC4L and proteins involved in ribosome assembly and cell proliferation during T cell activation. These findings lay a foundation for probing into the post-transcriptional regulation in helper T cells and hold profound significance for understanding the activation and regulatory mechanisms of T cells.
Animals
;
Mice
;
Lymphocyte Activation
;
Cell Proliferation
;
Mice, Transgenic
;
Nuclear Proteins/genetics*
;
Th1 Cells/immunology*
;
Th17 Cells/metabolism*
;
CD4-Positive T-Lymphocytes/immunology*
;
Ribosomes/metabolism*
6.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
7.Prophylactic administration of all-trans retinoic acid alleviates inflammation in rats with collagen-induced arthritis.
Xiang ZENG ; Jing-Yan SHAN ; Yang LIU ; Yan-Hua NING ; Xue-Jian XIE ; Yu-Yan SHEN ; Jie SONG ; Yun LI
Journal of Southern Medical University 2016;37(2):172-177
OBJECTIVETo investigate the effects of prophylactic administration of all-trans retinoic acid (ATRA) in relieving inflammation in a rat model of collagen-induced arthritis (CIA).
METHODSFemale Wistar rats (6 to 8 weeks old) were randomly divided into normal control group, solvent control group, and prophylactic ATRA treatment (0.05, 0.5, and 5 mg/kg) groups. All the rats except for those in normal control group were subjected to subcutaneous injection of type II collagen and incomplete Freund adjuvant in the tails to induce CIA, followed by injection on the following day with saline, corn oil or different doses of ATRA 3 times a week. The arthritis index (AI) scores, histological scores, serum levels of TNF-α, IL-17A, and IL-10, and expressions of proteases related with cartilage damage were evaluated.
RESULTSOn the 15th day after the primary immunization, the AI scores increased significantly in all but the normal control groups; the scores increased progressively in all the 3 ATRA groups but remained lower than that in the solvent control group, which was stable over time. The rats in the 3 ATRA groups showed obvious pathologies in the knee and ankle joints, but the semi-quantitative scores of pathology damage showed no significance among them. Compared with those in solvent control group, the serum IL-17A and TNF-α levels decreased, serum IL-10 level increased, and the expressions of ADAMT-4 and MMP-3 proteins decreased significantly in the knees in the 3 ATRA groups.
CONCLUSIONATRA can reduce the production of TNF-α and IL-17A and increase the production of IL-10 to alleviate the inflammation in rats with CIA. ATRA may delay the progression of RA by correcting the imbalance of Th1/Th2 and Th17/Treg.
ADAMTS4 Protein ; metabolism ; Animals ; Arthritis, Experimental ; chemically induced ; drug therapy ; Collagen Type II ; Female ; Freund's Adjuvant ; Inflammation ; drug therapy ; Interleukin-10 ; blood ; Interleukin-17 ; blood ; Lipids ; Matrix Metalloproteinase 3 ; metabolism ; Rats ; Rats, Wistar ; T-Lymphocytes, Regulatory ; immunology ; Th17 Cells ; immunology ; Tretinoin ; pharmacology ; Tumor Necrosis Factor-alpha ; blood
8.The role of Th9, Th17 and Treg cells on pathogenesis of nasal polyps.
Ya WANG ; Yue WANG ; Yongming MA ; Xiaoping PU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2016;30(4):277-281
OBJECTIVE:
To investigate the expression levels of Th9, Th17 and Treg cells in peripheral blood of patients with chronic rhinosinusitis with nasal polyps (CRSwNP), and explore the role of Th9, Th17 and Treg cells in the progression of CRSwNP.
METHOD:
Forty-six cases with CRSwNP served as an experimental group, while 22 cases with simple nasal bleeding or nasal septum deviation served as a control group. The peripheral blood of patients in both groups was collected and analyzed. (1) Using flow cytometry (FCM) to detect the expression rates of Th9, Th17 and Treg cells in peripheral blood. (2) Using qRT-PCR to detect the expression of relevant transcription factor of Th9, Th17 and Treg cells (IL-9mRNA, PU. 1, IRF-4, RoRc, and Foxp3). (3) Using SPSS16.0 to analyse the differentiations and the revelance among these three cells.
RESULT:
(1) The expression rates of Th9 and Th17 cells in patients with CRSwNP (1.29% ± 0.18%, 4.03% ± 0.69%) was higher than the control group (0.45% ± 0.14%, 1.35% ± 0.26%). But the expression rates of Treg cells in the experimental group (2.98% ± 0.13%) was significantly lower than the control group (5.44% ± 0.57%). The differences were statistically significant (P < 0.05). (2) The expression of revelant transcription factor (IL-9mRNA, PU.1, IRF-4, RoRc) in NP group was also higher than the control group. The expression of Foxp3 in the control group was higher than NP, the differences both were statistically significant (P < 0.05). (3) The difference between Th9 and Th17 in patients with NP was not significant (P > 0.05), and the negative correlation was found between Th17 and Treg (r = -0.549, P < 0.05).
CONCLUSION
The high expression level of Th9 and Th17 cells might promote the development of NP, whereas the low expression level of Treg cells might further aggravate the occurrence of NP. The main function of the imbalance of Th17/Treg cells may be immune regulation in the pathogenesis of nasal polys.
Case-Control Studies
;
Cell Differentiation
;
Disease Progression
;
Epistaxis
;
Flow Cytometry
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Nasal Polyps
;
immunology
;
pathology
;
Nasal Septum
;
abnormalities
;
Rhinitis
;
immunology
;
pathology
;
Sinusitis
;
immunology
;
pathology
;
T-Lymphocytes, Regulatory
;
cytology
;
Th17 Cells
;
cytology
;
Transcription Factors
;
metabolism
9.Role of Imbalance between Th17 Cells and Treg Cells in the Pathogenesis of Children with Henoch-Schonlein Purpura.
Qiang WANG ; Yang-Yi SHI ; Mei CAO ; Wei DONG ; Jian-Bo ZHANG
Journal of Experimental Hematology 2015;23(5):1391-1396
OBJECTIVETo explore the role of Th17 cells, CD4⁺ CD25⁺ regulatory Treg cells (Treg) and its transcription factor RORγt and FoxP3 in the pathogenesis of children with Henoch-Schonlein purpura (HSP) so as to provide a new strategy for treatment of children with Henoch-Schonlein purpura by regulating the balance of Th17 and Treg cells.
METHODSForty children with Henoch-Schonlein purpura in acute phase admitted in our hospital from February 2012 to March 2013 were enrolled in this study, forty healthy children were simultaneously used as controls. The expression of RORγt mRNA and FoxP3 mRNA in peripheral blood mononuclear cells was detected by real-time PCR using SYBR Green I. The levels of IL-17A, TGF-β1, IL-2 and IL-6 in serum were measured by ABC-ELISA. The ratio of Th17 cells to Treg cells in peripheral blood T lymphocytes was detected by flow cytometry.
RESULTSThe levels of Th17 cells (2.75 ± 0.60%) and RORγt mRNA (1.11 ± 0.51) in HSP group were significantly higher than levels of Th17 cells (1.41 ± 0.29%) and RORγt mRNA (0.65 ± 0.24) (P < 0.01) in control group, but the levels of Treg cells (4.56 ± 1.26%) and FoxP3 mRNA (1.15 ± 0.45) in HSP group were lower than those of Treg cells (7.85 ± 1.97%) and FoxP3 mRNA (2.32 ± 1.1) (P < 0.01) in the control group. The relative levels of serum IL-17A, IL-6, TGF-β1 (40.40 ± 11.81 pg/ml, 75.38 ± 27.19 pg/ml, 309.41 ± 81.03 pg/ml) in the HSP group were significantly higher than those in the control group [IL-17A (20.32 ± 10.70 pg/ml), IL-6 (25.16 ± 8.31 pg/ml), TGF-β1 (236.34 ± 66.01 pg/ml)] (P < 0.01), but the level of serum IL-2 (25.60 ± 13.19 pg/ml) in the HSP group was lower than that (34.42 ± 11.69 pg/ml) in the control group (P < 0.01). The further detection demonstrated that in the children with acute HSP, the expression of Th17 cells positively correlated with RORγt mRNA, IL-17A and IL-6 with the correlation coefficients of 0.887, 0.938 and 0.934 (P < 0.01), respectively. The positive correlation was also shown between the Treg cells and FoxP3 mRNA, IL-2 with the correlation coefficients of 0.834 and 0.932 (P < 0.01), respectively.
CONCLUSIONThere are higher expression levels of Th17 cells, RORγt mRNA and IL-17A, and lower expression levels of Treg cells, FoxP3 mRNA of children with HSP in acute phase, which shows that Th17/Treg imbalance exists in children with HSP in acute phase. The levels of serum IL-6, TGF-β1 increase and the serum IL-2 decrease in children with HSP in acute phase, moreover, there are the positive correlations between the levels of Th17 cells and expression of IL-6, as well as the level of Treg cells and expression of IL-2 in children with HSP in acute phase.
Case-Control Studies ; Child ; Flow Cytometry ; Forkhead Transcription Factors ; metabolism ; Humans ; Interleukin-17 ; blood ; Interleukin-2 ; blood ; Interleukin-6 ; blood ; Leukocytes, Mononuclear ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; metabolism ; Purpura, Schoenlein-Henoch ; immunology ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; T-Lymphocytes, Regulatory ; cytology ; Th17 Cells ; cytology ; Transforming Growth Factor beta1 ; blood
10.Effects of Thalidomide on Peripheral Blood Th17 Cells of Patients with Multiple Myeloma.
Yun YANG ; Ai-Li HE ; Jian-Li WANG ; Jie LIU ; Wan-Hong ZHAO ; Ju BAI
Journal of Experimental Hematology 2015;23(5):1341-1345
OBJECTIVETo explore the change of T help cell 17 (Th17) in the peripheral blood of patients with multiple myeloma (MM) before and after treatment with thalidomide.
METHODSA total of 35 MM patients treated with thalidomide and 35 healthy controls were enrolled in this study. The percentage of Th17 cells were detected by flow cytometry. The mRNA levels of retinoid-related orphan receptor gamma-t (RORγt) were detected by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and the plasm IL-17 levels were measured by enzyme linked immunosorbent assay (ELISA).
RESULTSThe percentage of Th17 cells, the mRNA expression of RORγt and the plasm IL-17 levels in patients with MM were statistically higher than those in normal controls (P < 0.05). The percentage of Th17 cells was not correlate with the sex, age, disease type, globulin, immune globulin, light chain, M-protein and the proportion of plasmocytes (P > 0.05), but correlated with ISS stage, the level of β2-microglobulin and the plasm IL-17 levels (P < 0.05). The percentage of Th17 cells, the mRNA expression of RORγt and the plasm IL-17 levels in patients with response to thalidomide were statistically lower than those in patients before treatment (P < 0.05).
CONCLUSIONThe Th17 cells increase in the peripheral blood of patients with MM, the Th17 cells may participate in the occurrence of MM. Thalidomide may exert anti-MM through down-regulating Th17 cells.
Case-Control Studies ; Down-Regulation ; Enzyme-Linked Immunosorbent Assay ; Flow Cytometry ; Humans ; Interleukin-17 ; blood ; Multiple Myeloma ; drug therapy ; immunology ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; metabolism ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Th17 Cells ; drug effects ; Thalidomide ; pharmacology

Result Analysis
Print
Save
E-mail