1.4‑(Arylethyl)‑pyrrolo2,3-d pyrimidine improves post-traumatic stress disorder in mice by inhibiting mGluR5-regulated ERK1/2-SGK1 signaling pathway.
Cunbao HE ; Shaojie YANG ; Guoqi ZHU
Journal of Southern Medical University 2025;45(4):765-773
OBJECTIVES:
To observe the effect of 4-(arylethynyl)-pyrrolo[2,3-d] pyrimidine (10b) on post-traumatic stress disorder (PTSD)-like behaviors and ERK1/2-SGK1 signaling pathway in mice.
METHODS:
C57BL/6 mouse models exposed to single prolonged stress (SPS) were treated with daily gavage of saline, 10b at low, moderate and high doses, or paroxetine for 14 days. The changes in PTSD-like behaviors of SPS mice with different treatments were observed using behavioral tests. Western blotting and immunofluorescence assay were used to detect the protein expression levels of mGluR5, p-ERK, and SGK1 in the hippocampus of the mice. Pathological changes in the liver and kidney tissues of the mice were examined using HE staining. Molecular docking and molecular dynamics analyses were employed to evaluate the binding stability between the compound 10b and mGluR5.
RESULTS:
Compared to the normal control mice, the SPS mice exhibited obvious PTSD-like behaviors with increased hippocampal expressions of mGluR5 and p-ERK proteins and decreased SGK1 protein expression. Compound 10b significantly ameliorated behavioral abnormalities in SPS mice, inhibited mGluR5 expression, and reversed the dysregulation of p-ERK and SGK1. No obvious liver or kidney toxicity was observed after 10b treatment. Molecular docking and dynamics studies demonstrated a stable interaction between 10b and mGluR5.
CONCLUSIONS
The compound 10b ameliorates PTSD-like behaviors induced by SPS in mice possibly by inhibiting mGluR5 expression to modulate the ERK1/2-SGK1 signaling pathway.
Animals
;
Stress Disorders, Post-Traumatic/drug therapy*
;
Receptor, Metabotropic Glutamate 5/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Protein Serine-Threonine Kinases/metabolism*
;
Pyrimidines/pharmacology*
;
Immediate-Early Proteins/metabolism*
;
Signal Transduction/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Male
;
Molecular Docking Simulation
;
Hippocampus/metabolism*
2.Electroacupuncture improves post-traumatic stress disorder in rats by alleviating hippocampal mitochondrial injury via regulating Bcl-2/Bax/caspase-3 signaling.
Dandan MA ; Jie CHENG ; Hong ZHANG ; Guang LIU ; Kai SONG
Journal of Southern Medical University 2025;45(11):2375-2384
OBJECTIVES:
To investigate the mechanism underlying the therapeutic effect of electroacupuncture (EA) on post-traumatic stress disorder (PTSD) in rats.
METHODS:
Forty male SD rats were randomized equally into blank control group, PTSD model group, sham-acupuncture group, paroxetine group, and EA group. In the latter 3 groups, the rat models of PTSD, induced by continuous single-prolonged stress and plantar electrical stimulation, were treated with EA at GV20, GV24, BL18 and BL23 acupoints for 15 min (5 times a week for 3 weeks), sham-acupuncture without electrical stimulation, or gavage with paroxetine suspension on the same schedule. Behavioral changes of the rats were evaluated using open field test (OFT) and elevated plus maze (EPM) test. Hippocampal pathologies and neuronal changes were examined with HE and Nissl staining, and mitochondrial ultrastructure was examined using electron microscopy. The mRNA and protein expression levels of Bcl-2, Bax, and caspase-3 were detected by RT-qPCR and immunofluorescence staining.
RESULTS:
The rat models of PTSD showed significantly reduced total distance traveled in OFT and distance and time spent in the open arms of the EPM, with decreased hippocampal neurons, obvious neuronal and mitochondrial pathologies, decreased hippocampal expression of Bcl-2, and increased Bax and caspase-3 expressions. Treatments with paroxetine and EA both significantly improved behavioral changes of the rat models, increased the number of Nissl-stained neurons, obviously alleviated pathologies in the hippocampal neurons and mitochondrial ultrastructure, increased hippocampal Bcl-2 expression, and lowered caspase-3 expressions. Paroxetine showed significantly better effect than EA for improving performance of the rats in EPM test, whereas sham-acupuncture did not produce any significant improvement.
CONCLUSIONS
EA alleviates PTSD in rats possibly by upregulating Bcl-2 and downregulating Bax and caspase-3, thereby ameliorating hippocampal mitochondrial damage.
Animals
;
Electroacupuncture
;
Stress Disorders, Post-Traumatic/metabolism*
;
Hippocampus/pathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Mitochondria/pathology*
;
Signal Transduction
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Disease Models, Animal
3.How Fear Memory is Updated: From Reconsolidation to Extinction?
Jiahui CHEN ; Zhuowen FANG ; Xiaolan ZHANG ; Yanrong ZHENG ; Zhong CHEN
Neuroscience Bulletin 2025;41(6):1054-1084
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Fear/psychology*
;
Extinction, Psychological/physiology*
;
Animals
;
Stress Disorders, Post-Traumatic/psychology*
;
Humans
;
Memory Consolidation/physiology*
;
Memory/physiology*
4.Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex.
Yu-Die YANG ; Wen ZHONG ; Ming CHEN ; Qing-Chen TANG ; Yan LI ; Lu-Lu YAO ; Mei-Qi ZHOU ; Neng-Gui XU ; Shuai CUI
Journal of Integrative Medicine 2025;23(5):537-547
OBJECTIVE:
To elucidate the specific mechanisms by which electroacupuncture (EA) alleviates anxiety and fear behaviors associated with posttraumatic stress disorder (PTSD), focusing on the role of lipocalin-2 (Lcn2).
METHODS:
The PTSD mouse model was subjected to single prolonged stress and shock (SPS&S), and the animals received 15 min sessions of EA at Shenmen acupoint (HT7). Behavioral tests were used to investigate the effects of EA at HT7 on anxiety and fear. Western blotting and enzyme-linked immunosorbent assay were used to quantify Lcn2 and inflammatory cytokine levels in the prefrontal cortex (PFC). Additionally, the activity of PFC neurons was evaluated by immunofluorescence and in vivo electrophysiology.
RESULTS:
Mice subjected to SPS&S presented increased anxiety- and fear-like behaviors. Lcn2 expression in the PFC was significantly upregulated following SPS&S, leading to increased expression of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6 and suppression of PFC neuronal activity. However, EA at HT7 inhibited Lcn2 release, reducing neuroinflammation and hypoexcitability in the PFC. Lcn2 overexpression mitigated the effects of EA at HT7, resulting in anxiety- and fear-like behaviors.
CONCLUSION
EA at HT7 can ameliorate PTSD-associated anxiety and fear, and its mechanism of action appears to involve the inhibition of Lcn2-mediated neural activity and inflammation in the PFC. Please cite this article as: Yang YD, Zhong W, Chen M, Tang QC, Li Y, Yao LL, et al. Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex. J Integr Med. 2025; 23(5):537-547.
Electroacupuncture
;
Stress Disorders, Post-Traumatic/metabolism*
;
Animals
;
Lipocalin-2/metabolism*
;
Prefrontal Cortex/physiopathology*
;
Male
;
Mice
;
Neurons/physiology*
;
Disease Models, Animal
;
Fear
;
Behavior, Animal
;
Mice, Inbred C57BL
;
Neuroinflammatory Diseases/metabolism*
;
Anxiety/therapy*
;
Acupuncture Points
5.Effects of Shugan Tiaoshen acupuncture on anxiety-like behavior and PKC/ERK/CREB pathway in the bed nucleus of the stria terminalis in rats with post-traumatic stress disorder.
Yongrui WANG ; Xianli ZHENG ; Xingke YAN
Chinese Acupuncture & Moxibustion 2024;44(11):1281-1288
OBJECTIVE:
To observe the effect of Shugan Tiaoshen acupuncture (acupuncture for soothing the liver and regulating the spirit) on the protein kinase C/extracellular signal-regulated kinase/cAMP response element-binding protein (PKC/ERK/CREB) signaling pathway in the bed nucleus of the stria terminalis (BNST) of rats with post-traumatic stress disorder (PTSD), and to explore the mechanism of acupuncture on alleviating anxiety and fear in PTSD.
METHODS:
Fifty SPF-grade male SD rats were randomly divided into a blank group (10 rats) and a PTSD model group (40 rats). The PTSD model was induced by using a combination of closed electric shock and forced exhaustive swimming. Thirty successfully modeled rats were randomly assigned to a model group, a medication group, and an acupuncture group, with 10 rats in each group. The rats in the medication group were treated with paroxetine hydrochloride solution by gavage, once daily for 12 consecutive days. The rats in the acupuncture group were treated with acupuncture at "Baihui" (GV 20) and bilateral "Neiguan" (PC 6), "Shenmen" (HT 7), "Taichong" (LR 3). "Baihui" (GV 20) was needled daily, while the other acupoints were alternately needled on the left side on odd days and the right side on even days, once daily for 12 consecutive days. Anxiety and fear behaviors changes were assessed by using the open field test and elevated plus maze test. Histological changes in the BNST were observed by using HE staining and Nissl staining. The expression of PKC, phosphorylated PKC (p-PKC), ERK1/2, phosphorylated ERK1/2 (p-ERK1/2), and p-CREB proteins in the BNST were detected by using Western blot.
RESULTS:
Compared with the blank group, the model group showed decreased time and total distance spent in the center of the open field and on the open arms of the elevated plus maze (P<0.05); the BNST tissues in the model group exhibited a reduced number of neurons, disorganized cell arrangement, cell shrinkage, nuclear condensation, abnormal neuronal structure, uneven Nissl staining, and reduced Nissl bodies. The model group showed increased protein expression of p-PKC and p-PKC/PKC ratio (P<0.05) and decreased protein expression of p-ERK1/2, p-CREB, and p-ERK1/2/ERK1/2 ratio (P<0.05). Compared with the model group, the medication group and the acupuncture group showed increased time and total distance spent in the center of the open field and on the open arms of the elevated plus maze (P<0.05); the BNST tissues showed increased number of neurons, more organized cell arrangement, improved neuronal structure, and increased Nissl bodies; the medication group and the acupuncture group also showed decreased p-PKC protein expression and p-PKC/PKC ratio (P<0.05) and increased p-ERK1/2, p-CREB protein expression, and p-ERK1/2/ERK1/2 ratio (P<0.05).
CONCLUSION
Shugan Tiaoshen acupuncture could alleviate anxiety and fear behaviors in PTSD rats, and improve neuronal damage in the BNST. The mechanism may be related to the regulation of the PKC/ERK/CREB signaling pathway in the BNST.
Animals
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Acupuncture Therapy
;
Protein Kinase C/metabolism*
;
Stress Disorders, Post-Traumatic/metabolism*
;
Anxiety/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Humans
;
Septal Nuclei/metabolism*
;
Signal Transduction
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Acupuncture Points
;
Behavior, Animal
6.A study on post-traumatic stress disorder classification based on multi-atlas multi-kernel graph convolutional network.
Lijun ZHOU ; Hongru ZHU ; Yunfei LIU ; Xian MO ; Jun YUAN ; Changyu LUO ; Junran ZHANG
Journal of Biomedical Engineering 2024;41(6):1110-1118
Post-traumatic stress disorder (PTSD) presents with complex and diverse clinical manifestations, making accurate and objective diagnosis challenging when relying solely on clinical assessments. Therefore, there is an urgent need to develop reliable and objective auxiliary diagnostic models to provide effective diagnosis for PTSD patients. Currently, the application of graph neural networks for representing PTSD is limited by the expressiveness of existing models, which does not yield optimal classification results. To address this, we proposed a multi-graph multi-kernel graph convolutional network (MK-GCN) model for classifying PTSD data. First, we constructed functional connectivity matrices at different scales for the same subjects using different atlases, followed by employing the k-nearest neighbors algorithm to build the graphs. Second, we introduced the MK-GCN methodology to enhance the feature extraction capability of brain structures at different scales for the same subjects. Finally, we classified the extracted features from multiple scales and utilized graph class activation mapping to identify the top 10 brain regions contributing to classification. Experimental results on seismic-induced PTSD data demonstrated that our model achieved an accuracy of 84.75%, a specificity of 84.02%, and an AUC of 85% in the classification task distinguishing between PTSD patients and non-affected subjects. The findings provide robust evidence for the auxiliary diagnosis of PTSD following earthquakes and hold promise for reliably identifying specific brain regions in other PTSD diagnostic contexts, offering valuable references for clinicians.
Humans
;
Stress Disorders, Post-Traumatic/diagnostic imaging*
;
Neural Networks, Computer
;
Algorithms
;
Brain/diagnostic imaging*
;
Magnetic Resonance Imaging
7.Psychiatry and spirituality: Relationships and importance in psychotherapy
The Philippine Journal of Psychiatry 2023;4(1-2):1-9
This paper summarizes a lecture on psychiatry and spirituality, which examined research onthe relationship between religion, spirituality and mental health, and discussed theimportance of addressing spiritual issues in psychotherapy. In this article, religion andspirituality are first differentiated from one another. Next, research on the relationshipbetween religion and mental health is examined. Third, a theoretical model is presentedexplaining how religious involvement may affect mental and social health. Fourth, a review of religious/spiritually-integrated psychotherapy is presented with a focus ondepression/anxiety, moral injury, and PTSD. Finally, further resources for more informationabout the topic is provided. Because many people in the Philippines are religious, and religionaffects mental health one way or the other, it cannot be ignored by psychiatrists who practicein this country.
Religion
;
Spirituality
;
Depression
;
Anxiety
;
Suicide
;
Substance-Related Disorders
;
Stress Disorders, Post-Traumatic
;
Psychotherapy
8.The impact of amygdala glutamate receptors on cardiovascular function in rats with post-traumatic stress disorder.
Ya-Yang WU ; Kun-Yi CAI ; Yu-Jie WU ; Chao ZHENG ; Meng-Ya WANG ; Huan-Huan ZHANG
Acta Physiologica Sinica 2023;75(5):611-622
Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Stress Disorders, Post-Traumatic
;
Receptors, AMPA
;
6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology*
;
Receptors, Glutamate/metabolism*
;
Amygdala
;
Weight Gain
;
Medulla Oblongata/physiology*
;
Blood Pressure
9.Effects of post-traumatic stress disorder on the excitability of glutamatergic and GABAergic neurons in dorsal and ventral hippocampus in mice.
Dong-Bo LIU ; Yan SHI ; Shen-Ping ZHENG ; Hao-Ran ZHOU ; Li-Wei ZHAO
Acta Physiologica Sinica 2023;75(3):369-378
The purpose of this study was to investigate the effects of post-traumatic stress disorder (PTSD) on electrophysiological characteristics of glutamatergic and GABAergic neurons in dorsal hippocampus (dHPC) and ventral hippocampus (vHPC) in mice, and to elucidate the mechanisms underlying the plasticity of hippocampal neurons and memory regulation after PTSD. Male C57Thy1-YFP/GAD67-GFP mice were randomly divided into PTSD group and control group. Unavoidable foot shock (FS) was applied to establish PTSD model. The spatial learning ability was explored by water maze test, and the changes in electrophysiological characteristics of glutamatergic and GABAergic neurons in dHPC and vHPC were examined using whole-cell recording method. The results showed that FS significantly reduced the movement speed, and enhanced the number and percentage of freezing. PTSD significantly prolonged the escape latency in localization avoidance training, shortened the swimming time in the original quadrant, extended the swimming time in the contralateral quadrant, and increased absolute refractory period, energy barrier and inter-spike interval of glutamatergic neurons in dHPC and GABAergic neurons in vHPC, while decreased absolute refractory period, energy barrier and inter-spike interval of GABAergic neurons in dHPC and glutamatergic neurons in vHPC. These results suggest that PTSD can damage spatial perception of mice, down-regulate the excitability of dHPC and up-regulate the excitability of vHPC, and the underlying mechanism may involve the regulation of spatial memory by the plasticity of neurons in dHPC and vHPC.
Mice
;
Male
;
Animals
;
Stress Disorders, Post-Traumatic
;
Hippocampus
;
Spatial Learning
;
GABAergic Neurons
10.Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace.
Biao GAO ; Yi-Cui QU ; Meng-Yu CAI ; Yin-Yin ZHANG ; Hong-Tao LU ; Hong-Xia LI ; Yu-Xiao TANG ; Hui SHEN
Journal of Integrative Medicine 2023;21(4):385-396
OBJECTIVE:
This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD).
METHODS:
The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted.
RESULTS:
Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression.
CONCLUSION
Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; 21(4):385-396.
Humans
;
Stress Disorders, Post-Traumatic/drug therapy*
;
Hallucinogens/therapeutic use*
;
Substance-Related Disorders/drug therapy*


Result Analysis
Print
Save
E-mail