1.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
2.Single exposure to near-threshold 5G millimeter wave modifies restraint stress responses in rats.
Akiko MATSUMOTO ; Ikumi ENDO ; Etsuko IJIMA ; Akimasa HIRATA ; Sachiko KODERA ; Masayoshi ICHIBA ; Mikiko TOKIYA ; Takashi HIKAGE ; Hiroshi MASUDA
Environmental Health and Preventive Medicine 2025;30():33-33
BACKGROUND:
In response to growing concerns about the health effects of quasi-millimeter waves (qMMW) used in 5th-generation wireless systems, conservative whole-body exposure thresholds based on indirect evidence have been proposed. The guidelines define a whole-body average specific absorption rate (WBA-SAR) of 4 W/kg which causes a 1 °C increase in core temperature, as the operational threshold for adverse health effects. To address the lack of direct evidence, we recently reported that a 30-minute exposure to qMMW at 4.6 W/kg resulted in a 1 °C increase in rat core temperature. Here, we further analyzed the near-threshold stress response for the first time, using biological samples from the aforementioned and additional experiments.
METHODS:
A total of 59 young Sprague-Dawley rats (240-322 g) were exposed to 28 GHz for 40 minutes at WBA-SARs of 0, 3.7, and 7.2 W/kg, under normal (22.5 °C, 45-55% humidity), and heat (32 °C, 70% humidity) conditions. Rats were restrained in acrylic holders for dose control. We repeatedly measured serum and urinary biomarkers of stress response, aggregated the data, and analyzed them using a single statistical mixed model to subtract the effects of sham exposure and between-subject variation.
RESULTS:
Sham exposure induced stress responses, suggesting an effect of restraint. After the subtraction of the sham exposure effect, 28 GHz appeared to induce stress responses as evidenced by elevated serum-free corticosterone 1 or 3 days after the exposure, which was more evident in animals with a change in rectal temperature exceeding 1 °C. Urinary-free catecholamines demonstrated an inhibitory property of 28 GHz frequency exposure on the stress response as evidenced by noradrenaline on the day of exposure. Heat exposure enhanced this effect, suggesting a possible role of noradrenaline in heat dissipation by promoting cutaneous blood flow, a notion supported by the correlation between noradrenaline levels and tail surface temperature, a critical organ for heat dissipation.
CONCLUSIONS
This study is the first to demonstrate that qMMW whole-body exposure can alter the stress response as indicated by corticosterone and noradrenaline at near-threshold levels. Our findings may provide insight into the biological basis of the whole-body exposure thresholds in the international guidelines.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Male
;
Restraint, Physical
;
Stress, Physiological/radiation effects*
;
Corticosterone/blood*
;
Biomarkers/blood*
;
Microwaves/adverse effects*
3.Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota.
Si MEI ; Zhe DENG ; Fan-Ying MENG ; Qian-Qian GUO ; He-Yun TAO ; Lin ZHANG ; Chang XI ; Qing ZHOU ; Xue-Fei TIAN
Chinese journal of integrative medicine 2025;31(9):802-811
OBJECTIVES:
To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).
METHODS:
The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.
RESULTS:
The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.
CONCLUSION
SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Liver Neoplasms/microbiology*
;
Carcinoma, Hepatocellular/microbiology*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Powders
;
Cell Proliferation/drug effects*
;
Mice
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Hep G2 Cells
;
Receptors, Adrenergic, beta-2/genetics*
;
Stress, Physiological/drug effects*
;
Cell Movement/drug effects*
;
Male
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Proto-Oncogene Mas
4.Stress granules and organelles: coordinating cellular responses in health and disease.
Ying LIU ; Yin LI ; Peipei ZHANG
Protein & Cell 2025;16(6):418-438
Membrane-bound organelles and membraneless organelles (MLOs) coordinate various biological processes within eukaryotic cells. Among these, stress granules (SGs) are significant cytoplasmic MLOs that form in response to cellular stress, exhibiting liquid-like properties alongside stable substructures. SGs interact with diverse organelles, thereby influencing cellular pathways that are critical in both health and disease contexts. This review discusses the interplay between SGs and organelles and explores the methodologies employed to analyze interactions between SGs and other MLOs. Furthermore, it highlights the pivotal roles SGs play in regulating cellular responses and the pathogenesis of amyotrophic lateral sclerosis. Gaining insights into these interactions is essential for deciphering the mechanisms underlying both physiological processes and pathological conditions.
Humans
;
Stress Granules/pathology*
;
Organelles/metabolism*
;
Amyotrophic Lateral Sclerosis/pathology*
;
Animals
;
Stress, Physiological
;
Cytoplasmic Granules/metabolism*
5.Metabolic reprogramming by glutathione S-transferase enhances environmental adaptation of Streptococcus mutans.
Haoyue ZHENG ; Xian PENG ; Jing ZOU
West China Journal of Stomatology 2025;43(5):728-735
OBJECTIVES:
This study aims to investigate the impact of glutathione S-transferase (GST) on the environmental adaptability of Streptococcus mutans (S. mutans).
METHODS:
A GST knockout strain ΔgsT was constructed. Transcriptomic sequencing was performed to analyze the gene expression differences between the wild-type S. mutans UA159 and its GST knockout strain ΔgsT. Comprehensive functional assessments, including acid tolerance assays, hydrogen peroxide challenge assays, nutrient limitation growth assays, and fluorescence in situ hybridization, were conducted to evaluate the acid tolerance, antioxidant stress resistance, growth kinetics, and interspecies competitive ability of ΔgsT within plaque biofilms.
RESULTS:
Compared with the wild-type S. mutans, 198 genes in ΔgsT were significantly differentially expressed and enriched in pathways related to metabolism, stress response, and energy homeostasis. The survival rate of ΔgsT in acid tolerance assays was markedly reduced (P<0.01). After 15 min of hydrogen peroxide challenge, the survival rate of ΔgsT decreased to 38.12% (wild type, 71.75%). Under nutrient-limiting conditions, ΔgsT exhibited a significantly lower final OD600 value than the wild-type strain (P<0.05). In the biofilm competition assays, the proportion of S. mutans ΔgsT in the mixed biofilm (8.50%) was significantly lower than that of the wild type (16.89%) (P<0.05).
CONCLUSIONS
GST enhances the acid resistance, oxidative stress tolerance, and nutrient adaptation of S. mutans by regulating metabolism-related and stress response-related genes.
Streptococcus mutans/enzymology*
;
Biofilms
;
Glutathione Transferase/physiology*
;
Adaptation, Physiological
;
Hydrogen Peroxide/pharmacology*
;
Gene Expression Regulation, Bacterial
;
Oxidative Stress
;
Metabolic Reprogramming
6.Functions and mechanisms of Zn2+-dependent histone deacetylase in plant responses to abiotic stress.
Ming WEI ; Meng ZHAO ; Xinrui WU ; Guoqiang WU
Chinese Journal of Biotechnology 2025;41(2):491-509
The HDAs (a subfamily of histone deacetylases), a class of Zn2+-dependent histone deacetylases, are highly homologous to the reduced potassium dependency 3 (RPD3) in yeast. HDAs extensively regulate chromosome stability, gene transcription, and protein activity by catalyzing the removal of acetyl group from histone and non-histone lysine residues. HDA-mediated deacetylation is essential for plant growth, development, and responses to abiotic stress. We review the research progress in HDAs regarding the discovery, structures, classification, deacetylation process, and roles in regulating plant responses to abiotic stress. Furthermore, this paper prospects the future research on HDAs, aiming to provide theoretical support for the research on epigenetic regulation mediated by HDAs.
Histone Deacetylases/classification*
;
Zinc/metabolism*
;
Stress, Physiological/physiology*
;
Plants/genetics*
7.Functions and mechanisms of autophagy-related genes in plant responses to adversity stresses.
Yun'er REN ; Guoqiang WU ; Ming WEI
Chinese Journal of Biotechnology 2025;41(2):510-529
Autophagy is an evolutionarily conserved self-degradation process in eukaryotes. It not only plays a role in plant growth and development but also is involved in plant responses to biotic and abiotic stresses. Plants can initiate autophagy to degrade the surplus or damaged cytoplasmic materials and organelles, thus coping with abiotic and biotic stresses. The initiation of autophagy depends on autophagy-related genes (ATGs). The transcription factors can directly bind to the promoters of ATGs to activate autophagy and regulate their transcriptional levels and post-translational modifications. Furthermore, ATGs can directly or indirectly interact with plant hormones to regulate plant responses to stresses. When plants are exposed to salinity, drought, extreme temperatures, nutrient deficiencies, and pathogen stress, ATGs are significantly induced, which enhances the autophagy activity to facilitate the degradation of the denatured and misfolded proteins, thereby enhancing plant tolerance to adversity stresses. This article summarizes the discovery, structures, and classification of plant ATGs, reviews the research progress in the mechanisms of ATGs in plant responses to abiotic and biotic stresses, and prospects the future research directions. This review is expected to provide the genetic resources and a theoretical foundation for the genetic improvement of crops in responses to stress tolerance.
Autophagy/physiology*
;
Stress, Physiological/genetics*
;
Gene Expression Regulation, Plant
;
Plants/metabolism*
;
Transcription Factors/metabolism*
;
Plant Proteins/genetics*
;
Genes, Plant
;
Plant Physiological Phenomena
;
Droughts
8.Integrated transcriptomics and metabolomics analysis of flavonoid biosynthesis in Ophiopogon japonicum under cadmium stress.
Song GAO ; Mengli QIU ; Qing LI ; Qian ZHAO ; Erli NIU
Chinese Journal of Biotechnology 2025;41(2):588-601
Ophiopogon japonicus, a precious medicinal plant endemic to Zhejiang Province. Its tuberous roots are rich in bioactive components such as flavonoids, possessing anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the impact of cadmium (Cd) stress on the accumulation and biosynthetic pathway of flavonoids in O. japonicus, this study exposed O. japonicus to different concentrations of Cd stress and explored the changes through integrated transcriptomics and metabolomics analysis. The results demonstrated that Cd stress (1 mg/L and 10 mg/L) significantly increased the content of flavonoids in O. japonicus in a concentration-dependent manner. The metabolomics analysis revealed a total of 110 flavonoids including flavones, flavanols, flavonols, flavone and flavonol derivatives, flavanones, isoflavonoids, chalcones and dihydrochalcones, and anthocyanins in O. japonicus, among which flavones, flavonols, flavone and flavonol derivatives, and anthocyanins increased under Cd stress. The transcriptomics analysis identified several key flavonoid biosynthesis-associated genes with up-regulated expression under Cd stress, including 14 genes encoding 4-coumarate CoA ligase (4CL), 2 genes encoding chalcone isomerase (CHI), and 14 genes encoding phenylalanine ammonia lyase (PAL). The gene-metabolite regulatory network indicated significant positive correlations of 4CL (Cluster-21637.5012, Cluster-21637.90648, and Cluster-21637.62637) and CHI (Cluster-21637.111909 and Cluster-21637.123300) with flavonoid metabolites, suggesting that these genes promoted the synthesis of specific flavonoid metabolites, which led to the accumulation of total flavonoids under Cd stress. These findings provide theoretical support for the cultivation and utilization of medicinal plants in Cd-contaminated environments and offered new perspectives for studying plant responses to heavy metal stress.
Cadmium/toxicity*
;
Flavonoids/biosynthesis*
;
Metabolomics
;
Ophiopogon/drug effects*
;
Stress, Physiological
;
Transcriptome
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
9.Physiological responses and transcriptional regulation of Prunus mume 'Meiren' under drought stress.
Zixu WANG ; Chunyan LUO ; Yuhang TONG ; Weijun ZHENG ; Qingwei LI
Chinese Journal of Biotechnology 2025;41(2):618-638
Prunus mume is an ecologically and economically valuable plant with both medicinal and edible values. However, drought severely limits the promotion and cultivation of P. mume in the arid and semi-arid areas in northern China. In this study, we treated P. mume 'Meiren' with natural drought and then assessed photosynthetic and physiological indexes such as osmoregulatory substances, photosynthetic parameters, and antioxidant enzyme activities. Furthermore, we employed transcriptome sequencing to explore the internal regulatory mechanism of P. mume under drought stress. As the drought stress aggravated, the levels of chlorophyll a (Chla), chlorophyll b (Chlb), chlorophyll (a+b)[Chl(a+b)], and soluble protein (SP) in P. mume first elevated and then declined. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), effective photochemical quantum yield [Y(Ⅱ)], photochemical quenching (qP), and relative electron transport rate (ETR) all kept decreasing, while the levels of malondialdehyde, superoxide dismutase (SOD), peroxidase (POD), and osmoregulatory substances rose. Transcriptome sequencing revealed a total of 24 853 high-quality genes. Gene ontology (GO) enrichment showed that differentially expressed genes (DEGs) were the most under severe drought. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the DEGs during the four drought periods were mainly involved in the biosynthesis of secondary metabolites, plant-pathogen interaction, plant hormone signal transduction, starch and sucrose metabolism, and mitogen-activated protein kinase signaling pathways. Furthermore, we identified 16 key genes associated with the drought tolerance of P. mume 'Meiren'. This study discovered that P. mume might up-regulate or down-regulate the expression of drought tolerance-related genes such as SUS, P5CS, LEA, SOD, POD, SOD1, TPPD, and TPPA via transcription factors like MYB, ERF, bHLH, NAC, and WRKY to promote the accumulation of osmoregulatory substances like sucrose and enhance the activities of antioxidant enzymes such as SOD and POD, thus reducing the harm of reactive oxygen species and protecting the structure and function of the membrane system under drought stress. The findings provide theoretical references for further exploration of candidate genes of P. mume in response to drought stress and breeding of drought-tolerant varieties.
Droughts
;
Photosynthesis/physiology*
;
Gene Expression Regulation, Plant
;
Stress, Physiological/genetics*
;
Prunus/genetics*
;
Chlorophyll/metabolism*
;
Plant Proteins/genetics*
10.Arbuscular mycorrhizal fungi improve physiological metabolism and ameliorate root damage of Coleus scutellarioides under cadmium stress.
Yanan HOU ; Fan JIANG ; Shuyang ZHOU ; Dingyin CHEN ; Yijie ZHU ; Yining MIAO ; Kai CENG ; Yifang WANG ; Min WU ; Peng LIU
Chinese Journal of Biotechnology 2025;41(2):680-692
Soil cadmium pollution can adversely affect the cultivation of the ornamental plant, Coleus scutellarioides. Upon cadmium contamination of the soil, the growth of C. scutellarioides is impeded, and it may even succumb to the toxic accumulation of cadmium. In this study, we investigated the effects of arbuscular mycorrhizal fungi (AMF) on the adaptation of C. scutellarioides to cadmium stress, by measuring the physiological metabolism and the degree of root damage of C. scutellarioides, with Aspergillus oryzae as the test fungi. The results indicated that cadmium stress increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the content of malondialdehyde (MDA) and proline (Pro) within the cells of C. scutellarioides, but inhibited mycorrhizal infestation rate, root vigour and growth rate to a great degree. With the same cadmium concentration, the inoculation of AMF significantly improved the physiological indexes of C. scutellarioides. The maximum decrease of MDA content was 42.16%, and the content of secondary metabolites rosemarinic acid and anthocyanosides could be increased by up to 27.43% and 25.72%, respectively. Meanwhile, the increase of root vigour was as high as 35.35%, and the DNA damage of the root system was obviously repaired. In conclusion, the inoculation of AMF can promote the accumulation of secondary metabolites, alleviate root damage, and enhance the tolerance to cadmium stress in C. scutellarioides.
Cadmium/toxicity*
;
Mycorrhizae/physiology*
;
Plant Roots/drug effects*
;
Soil Pollutants/toxicity*
;
Stress, Physiological
;
Superoxide Dismutase/metabolism*

Result Analysis
Print
Save
E-mail