1.A semi-supervised material quantitative intelligent imaging algorithm for spectral CT based on prior information perception learning.
Zheng DUAN ; Danyang LI ; Dong ZENG ; Zhaoying BIAN ; Jianhua MA
Journal of Southern Medical University 2023;43(4):620-630
OBJECTIVE:
To propose a semi-supervised material quantitative intelligent imaging algorithm based on prior information perception learning (SLMD-Net) to improve the quality and precision of spectral CT imaging.
METHODS:
The algorithm includes a supervised and a self- supervised submodule. In the supervised submodule, the mapping relationship between low and high signal-to-noise ratio (SNR) data was constructed through mean square error loss function learning based on a small labeled dataset. In the self- supervised sub-module, an image recovery model was utilized to construct the loss function incorporating the prior information from a large unlabeled low SNR basic material image dataset, and the total variation (TV) model was used to to characterize the prior information of the images. The two submodules were combined to form the SLMD-Net method, and pre-clinical simulation data were used to validate the feasibility and effectiveness of the algorithm.
RESULTS:
Compared with the traditional model-driven quantitative imaging methods (FBP-DI, PWLS-PCG, and E3DTV), data-driven supervised-learning-based quantitative imaging methods (SUMD-Net and BFCNN), a material quantitative imaging method based on unsupervised learning (UNTV-Net) and semi-supervised learning-based cycle consistent generative adversarial network (Semi-CycleGAN), the proposed SLMD-Net method had better performance in both visual and quantitative assessments. For quantitative imaging of water and bone materials, the SLMD-Net method had the highest PSNR index (31.82 and 29.06), the highest FSIM index (0.95 and 0.90), and the lowest RMSE index (0.03 and 0.02), respectively) and achieved significantly higher image quality scores than the other 7 material decomposition methods (P < 0.05). The material quantitative imaging performance of SLMD-Net was close to that of the supervised network SUMD-Net trained with labeled data with a doubled size.
CONCLUSIONS
A small labeled dataset and a large unlabeled low SNR material image dataset can be fully used to suppress noise amplification and artifacts in basic material decomposition in spectral CT and reduce the dependence on labeled data-driven network, which considers more realistic scenario in clinics.
Tomography, X-Ray Computed/methods*
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
;
Signal-To-Noise Ratio
;
Perception
2.Anti-motion Artifact Performance Test System for Ambulatory ECG Monitoring Equipment.
Liping QIN ; Yi WU ; Ke XU ; Xiangrui ZHAO
Chinese Journal of Medical Instrumentation 2023;47(6):624-629
Anti-motion artifact is one of the most important properties of ambulatory ECG monitoring equipment. At present, there is a lack of standardized means to test the performance of anti-motion artifact. ECG simulator and special conductive leather are used to build the simulator, it is used to simulate human skin, to generate ECG signal input for the ECG monitoring equipment attached to it. The mechanical arm and fixed support are used to build a motion simulation system to fix the conductive leather. The mechanical arm is programmed to simulate various motion states of the human body, so that the ECG monitoring equipment can produce corresponding motion artifacts. The collected ECG signals are read wirelessly, observed, analyzed and compared, and the anti-motion artifact performance of ECG monitoring equipment is evaluated. The test results show that by artificially creating the small difference between the two groups of ambulatory ECG monitoring equipment, the system can accurately test the interference signals introduced under the conditions of controlled movement such as tension and torsion, and compare the advantages and disadvantages. The research shows that the test system can provide convenient and accurate verification means for the research of optimizing anti-motion interference.
Humans
;
Artifacts
;
Signal Processing, Computer-Assisted
;
Electrocardiography, Ambulatory/methods*
;
Electrocardiography
;
Motion
3.Recognition of motor imagery electroencephalogram based on flicker noise spectroscopy and weighted filter bank common spatial pattern.
Keling FEI ; Xiaoxian CAI ; Shunzhi CHEN ; Lizheng PAN ; Wei WANG
Journal of Biomedical Engineering 2023;40(6):1126-1134
Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern ( wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.
Brain-Computer Interfaces
;
Imagination
;
Signal Processing, Computer-Assisted
;
Electroencephalography/methods*
;
Algorithms
;
Spectrum Analysis
4.Detection method of early heart valve diseases based on heart sound features.
Chengfa SUN ; Xinpei WANG ; Changchun LIU
Journal of Biomedical Engineering 2023;40(6):1160-1167
Heart valve disease (HVD) is one of the common cardiovascular diseases. Heart sound is an important physiological signal for diagnosing HVDs. This paper proposed a model based on combination of basic component features and envelope autocorrelation features to detect early HVDs. Initially, heart sound signals lasting 5 minutes were denoised by empirical mode decomposition (EMD) algorithm and segmented. Then the basic component features and envelope autocorrelation features of heart sound segments were extracted to construct heart sound feature set. Then the max-relevance and min-redundancy (MRMR) algorithm was utilized to select the optimal mixed feature subset. Finally, decision tree, support vector machine (SVM) and k-nearest neighbor (KNN) classifiers were trained to detect the early HVDs from the normal heart sounds and obtained the best accuracy of 99.9% in clinical database. Normal valve, abnormal semilunar valve and abnormal atrioventricular valve heart sounds were classified and the best accuracy was 99.8%. Moreover, normal valve, single-valve abnormal and multi-valve abnormal heart sounds were classified and the best accuracy was 98.2%. In public database, this method also obtained the good overall accuracy. The result demonstrated this proposed method had important value for the clinical diagnosis of early HVDs.
Humans
;
Heart Sounds
;
Heart Valve Diseases/diagnosis*
;
Algorithms
;
Support Vector Machine
;
Signal Processing, Computer-Assisted
5.Multi-task motor imagery electroencephalogram classification based on adaptive time-frequency common spatial pattern combined with convolutional neural network.
Ying HU ; Yan LIU ; Chenchen CHENG ; Chen GENG ; Bin DAI ; Bo PENG ; Jianbing ZHU ; Yakang DAI
Journal of Biomedical Engineering 2022;39(6):1065-1073
The effective classification of multi-task motor imagery electroencephalogram (EEG) is helpful to achieve accurate multi-dimensional human-computer interaction, and the high frequency domain specificity between subjects can improve the classification accuracy and robustness. Therefore, this paper proposed a multi-task EEG signal classification method based on adaptive time-frequency common spatial pattern (CSP) combined with convolutional neural network (CNN). The characteristics of subjects' personalized rhythm were extracted by adaptive spectrum awareness, and the spatial characteristics were calculated by using the one-versus-rest CSP, and then the composite time-domain characteristics were characterized to construct the spatial-temporal frequency multi-level fusion features. Finally, the CNN was used to perform high-precision and high-robust four-task classification. The algorithm in this paper was verified by the self-test dataset containing 10 subjects (33 ± 3 years old, inexperienced) and the dataset of the 4th 2018 Brain-Computer Interface Competition (BCI competition Ⅳ-2a). The average accuracy of the proposed algorithm for the four-task classification reached 93.96% and 84.04%, respectively. Compared with other advanced algorithms, the average classification accuracy of the proposed algorithm was significantly improved, and the accuracy range error between subjects was significantly reduced in the public dataset. The results show that the proposed algorithm has good performance in multi-task classification, and can effectively improve the classification accuracy and robustness.
Humans
;
Adult
;
Imagination
;
Neural Networks, Computer
;
Imagery, Psychotherapy/methods*
;
Electroencephalography/methods*
;
Algorithms
;
Brain-Computer Interfaces
;
Signal Processing, Computer-Assisted
6.Automatic removal algorithm of electrooculographic artifacts in non-invasive brain-computer interface based on independent component analysis.
Hao SONG ; Song XU ; Guoming LIU ; Jing LIU ; Peng XIONG
Journal of Biomedical Engineering 2022;39(6):1074-1081
The non-invasive brain-computer interface (BCI) has gradually become a hot spot of current research, and it has been applied in many fields such as mental disorder detection and physiological monitoring. However, the electroencephalography (EEG) signals required by the non-invasive BCI can be easily contaminated by electrooculographic (EOG) artifacts, which seriously affects the analysis of EEG signals. Therefore, this paper proposed an improved independent component analysis method combined with a frequency filter, which automatically recognizes artifact components based on the correlation coefficient and kurtosis dual threshold. In this method, the frequency difference between EOG and EEG was used to remove the EOG information in the artifact component through frequency filter, so as to retain more EEG information. The experimental results on the public datasets and our laboratory data showed that the method in this paper could effectively improve the effect of EOG artifact removal and improve the loss of EEG information, which is helpful for the promotion of non-invasive BCI.
Humans
;
Electrooculography/methods*
;
Artifacts
;
Brain-Computer Interfaces
;
Algorithms
;
Electroencephalography/methods*
;
Signal Processing, Computer-Assisted
7.Heart sound classification based on improved mel frequency cepstrum coefficient and integrated decision network method.
Yuanlin WANG ; Jing SUN ; Hongbo YANG ; Tao GUO ; Jiahua PAN ; Weilian WANG
Journal of Biomedical Engineering 2022;39(6):1140-1148
Heart sound analysis is significant for early diagnosis of congenital heart disease. A novel method of heart sound classification was proposed in this paper, in which the traditional mel frequency cepstral coefficient (MFCC) method was improved by using the Fisher discriminant half raised-sine function (F-HRSF) and an integrated decision network was used as classifier. It does not rely on segmentation of the cardiac cycle. Firstly, the heart sound signals were framed and windowed. Then, the features of heart sounds were extracted by using improved MFCC, in which the F-HRSF was used to weight sub-band components of MFCC according to the Fisher discriminant ratio of each sub-band component and the raised half sine function. Three classification networks, convolutional neural network (CNN), long and short-term memory network (LSTM), and gated recurrent unit (GRU) were combined as integrated decision network. Finally, the two-category classification results were obtained through the majority voting algorithm. An accuracy of 92.15%, sensitivity of 91.43%, specificity of 92.83%, corrected accuracy of 92.01%, and F score of 92.13% were achieved using the novel signal processing techniques. It shows that the algorithm has great potential in early diagnosis of congenital heart disease.
Humans
;
Heart Sounds
;
Algorithms
;
Neural Networks, Computer
;
Heart Defects, Congenital/diagnosis*
;
Signal Processing, Computer-Assisted
8.Research on the feature representation of motor imagery electroencephalogram signal based on individual adaptation.
Lizheng PAN ; Yi DING ; Shunchao WANG ; Aiguo SONG
Journal of Biomedical Engineering 2022;39(6):1173-1180
Aiming at the problem of low recognition accuracy of motor imagery electroencephalogram signal due to individual differences of subjects, an individual adaptive feature representation method of motor imagery electroencephalogram signal is proposed in this paper. Firstly, based on the individual differences and signal characteristics in different frequency bands, an adaptive channel selection method based on expansive relevant features with label F (ReliefF) was proposed. By extracting five time-frequency domain observation features of each frequency band signal, ReliefF algorithm was employed to evaluate the effectiveness of the frequency band signal in each channel, and then the corresponding signal channel was selected for each frequency band. Secondly, a feature representation method of common space pattern (CSP) based on fast correlation-based filter (FCBF) was proposed (CSP-FCBF). The features of electroencephalogram signal were extracted by CSP, and the best feature sets were obtained by using FCBF to optimize the features, so as to realize the effective state representation of motor imagery electroencephalogram signal. Finally, support vector machine (SVM) was adopted as a classifier to realize identification. Experimental results show that the proposed method in this research can effectively represent the states of motor imagery electroencephalogram signal, with an average identification accuracy of (83.0±5.5)% for four types of states, which is 6.6% higher than the traditional CSP feature representation method. The research results obtained in the feature representation of motor imagery electroencephalogram signal lay the foundation for the realization of adaptive electroencephalogram signal decoding and its application.
Humans
;
Imagination
;
Signal Processing, Computer-Assisted
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Imagery, Psychotherapy
;
Algorithms
9.A spatial-temporal hybrid feature extraction method for rapid serial visual presentation of electroencephalogram signals.
Yujie CUI ; Songyun XIE ; Xinzhou XIE ; Xu DUAN ; Chuanlin GAO
Journal of Biomedical Engineering 2022;39(1):39-46
Rapid serial visual presentation-brain computer interface (RSVP-BCI) is the most popular technology in the early discover task based on human brain. This algorithm can obtain the rapid perception of the environment by human brain. Decoding brain state based on single-trial of multichannel electroencephalogram (EEG) recording remains a challenge due to the low signal-to-noise ratio (SNR) and nonstationary. To solve the problem of low classification accuracy of single-trial in RSVP-BCI, this paper presents a new feature extraction algorithm which uses principal component analysis (PCA) and common spatial pattern (CSP) algorithm separately in spatial domain and time domain, creating a spatial-temporal hybrid CSP-PCA (STHCP) algorithm. By maximizing the discrimination distance between target and non-target, the feature dimensionality was reduced effectively. The area under the curve (AUC) of STHCP algorithm is higher than that of the three benchmark algorithms (SWFP, CSP and PCA) by 17.9%, 22.2% and 29.2%, respectively. STHCP algorithm provides a new method for target detection.
Algorithms
;
Brain
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Humans
;
Principal Component Analysis
;
Signal Processing, Computer-Assisted
10.Epilepsy detection and analysis method for specific patient based on data augmentation and deep learning.
Yong YANG ; Xiaolin QIN ; Xiaoguang LIN ; Han WEN ; Yuncong PENG
Journal of Biomedical Engineering 2022;39(2):293-300
In recent years, epileptic seizure detection based on electroencephalogram (EEG) has attracted the widespread attention of the academic. However, it is difficult to collect data from epileptic seizure, and it is easy to cause over fitting phenomenon under the condition of few training data. In order to solve this problem, this paper took the CHB-MIT epilepsy EEG dataset from Boston Children's Hospital as the research object, and applied wavelet transform for data augmentation by setting different wavelet transform scale factors. In addition, by combining deep learning, ensemble learning, transfer learning and other methods, an epilepsy detection method with high accuracy for specific epilepsy patients was proposed under the condition of insufficient learning samples. In test, the wavelet transform scale factors 2, 4 and 8 were set for experimental comparison and verification. When the wavelet scale factor was 8, the average accuracy, average sensitivity and average specificity was 95.47%, 93.89% and 96.48%, respectively. Through comparative experiments with recent relevant literatures, the advantages of the proposed method were verified. Our results might provide reference for the clinical application of epilepsy detection.
Algorithms
;
Child
;
Deep Learning
;
Electroencephalography
;
Epilepsy/diagnosis*
;
Humans
;
Seizures/diagnosis*
;
Signal Processing, Computer-Assisted
;
Wavelet Analysis

Result Analysis
Print
Save
E-mail