1.New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches.
Shiyao HU ; Yiqi CAI ; Yong SHEN ; Yingkuan SHAO ; Yushen DU ; Yiding CHEN
Journal of Zhejiang University. Science. B 2025;26(6):546-556
Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy. The oncolytic influenza A virus, although promising in preclinical investigations, remains to be implemented in clinical practice. Recent progress in genetic engineering, coupled with experiential insights, offers opportunities to enhance the therapeutic efficacy of the influenza A virus. This review explores the use of the influenza virus, its attenuated forms, and associated vaccines in cancer immunotherapy, highlighting their respective advantages and challenges. We further elucidate methods for engineering influenza viruses and innovative approaches to augment them with cytokines or immune checkpoint inhibitors, aiming to maximize their clinical impact. Our goal is to provide insights essential for refining influenza A virus-based viral tumor immunotherapies.
Humans
;
Neoplasms/immunology*
;
Immunotherapy/trends*
;
Influenza A virus/immunology*
;
Oncolytic Virotherapy/trends*
;
Animals
;
Cancer Vaccines/therapeutic use*
;
Oncolytic Viruses
;
Genetic Engineering
;
Immune Checkpoint Inhibitors/therapeutic use*
2.Research progress and development potential of oncolytic vaccinia virus.
Xinyu ZHANG ; Jiangshan HE ; Yiming SHAO
Chinese Medical Journal 2025;138(7):777-791
Oncolytic virotherapy is a promising therapeutic approach treating tumors, where oncolytic viruses (OVs) can selectively infect and lyse tumor cells through replication, while also triggering long-lasting anti-tumor immune responses. Vaccinia virus (VV) has emerged as a leading candidate for use as an OV due to its broad cytophilicity and robust capacity to express exogenous genes. Consequently, oncolytic vaccinia virus (OVV) has entered clinical trials. This review provides an overview of the key strategies used in the development of OVV, summarizes the findings from clinical trials, and addresses the challenges that must be overcome in the advancement of OVV-based therapies. Furthermore, it explores potential future strategies for enhancing the development and clinical application of OVV, intending to improve tumor treatment outcomes. The review aims to facilitate the further development and clinical adoption of OVV, thereby advancing tumor therapies.
Vaccinia virus/physiology*
;
Humans
;
Oncolytic Virotherapy/methods*
;
Oncolytic Viruses/physiology*
;
Neoplasms/therapy*
;
Animals
3.Oncolytic virus-mediated base editing for targeted killing of cervical cancer cells.
Huanhuan XU ; Siwei LI ; Xi LUO ; Zuping ZHOU ; Changhao BI
Chinese Journal of Biotechnology 2025;41(4):1382-1394
Conventional cancer therapies, such as radiotherapy and chemotherapy, often damage normal cells and may induce new tumors. Oncolytic viruses (OVs) selectively target tumor cells while sparing normal cells. Most OVs used in clinical trials have been genetically engineered to enhance their ability to target tumor cells and activate immune responses. To develop a specific OV-based approach for treating cervical cancer, this study constructed an oncolytic adenovirus that delivered a base editor targeting oncogenes to achieve efficient killing of tumor cells through inhibiting tumor growth and directly lysing tumor cells. We utilized the human telomerase reverse transcriptase (TERT) promoter to drive the expression of adenovirus early region 1A (E1A) and successfully constructed the P-hTERT-E1A-GFP vector, which was validated for its activity in cervical cancer cells. Given the critical role of the MYC oncogene in the research of oncology, identifying efficient editing sites for the MYC oncogene is a key step in this study.Three MYC-targeting gRNAs were engineered and co-delivered with ABE8e base editor plasmids into HEK293T cells. Following puromycin selection, Sanger sequencing demonstrated differential editing efficiencies: MYC-1 (43%), MYC-2 (25%), and MYC-3 (35%), identifying MYC-1 as the most efficient editing locus. By constructing the P-ABEs-hTERT-E1A-GFP and P-MYC gRNA-hTERT-E1A-GFP vectors, we successfully packaged the virus and confirmed its specificity and efficacy. The experimental results demonstrate that this novel oncolytic adenovirus effectively inhibits the growth of HeLa cells in vitro, providing new experimental evidence and potential strategies for treating cervical cancer based on the HeLa cell model.
Humans
;
Uterine Cervical Neoplasms/pathology*
;
Oncolytic Viruses/genetics*
;
Female
;
HEK293 Cells
;
Oncolytic Virotherapy/methods*
;
Adenoviridae/genetics*
;
Gene Editing/methods*
;
Telomerase/genetics*
;
Adenovirus E1A Proteins/genetics*
;
Genetic Vectors/genetics*
;
HeLa Cells
4.Preparation and antitumor activity characterization of oncolytic nanoparticles encapsulating CVA21.
Yinping WANG ; Qiying CAI ; Jingjing ZHOU ; Xiaodi ZHENG ; Linkang CAI ; Yang WANG ; Binlei LIU
Chinese Journal of Biotechnology 2025;41(4):1395-1414
This study aims to investigate the potential of oncolytic nanoparticles encapsulating Coxsackievirus A21 (CVA21) full-genome mRNA (CVA21@ONP) to resurrect CVA21 and induce apoptosis in host cells, as well as the antitumor immune effects of CVA21@ONP in immunocompetent tumor-bearing BALB/c mice. We used lipid nanoparticles (LNPs) to encapsulate CVA21 full-genome mRNA, thus preparing CVA21@ONP. The killing efficacy of CVA21@ONP was determined by the plaque assay and cell counting kit-8 (CCK-8), and the apoptosis in HT29 and CT26-iRFP cells was evaluated by flow cytometry. Mice were administrated with CVA21@ONP at high and low doses intratumorally, and the growth of tumors expressing infra-red fluorescent protein (iRFP) was monitored. Additionally, the types and changes of immune cells in the spleen were analyzed by flow cytometry. The results demonstrated that CVA21@ONP successfully resurrected CVA21 in both HT29 and U87MG cells. The plaque assay revealed robust killing effects of CVA21@ONP against both human and murine cell lines, and flow cytometry results showed increased early and late apoptotic cells. Notably, intratumoral detection revealed significantly down-regulated expression of iRFP in both high- and low-dose CVA21@ONP groups. Flow cytometry results further indicated that CVA21@ONP treatment effectively reduced the levels of immunosuppressive cells, including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), in the spleen, while enhancing T cell-dependent antitumor immune responses. These findings suggest that CVA21@ONP can replicate and survive extensively both in vitro and in vivo, activating the immune system of mice administrated with CVA21@ONP to target cells at the tumor site, thereby remodeling the tumor immune microenvironment and accelerating the suppression or even complete regression of tumors. The oncolytic performance of CVA21@ONP has been verified through intratumoral injection administration in this study, aimed at further exploring its therapeutic potential and promoting the development of the field of tumor treatment.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
Mice, Inbred BALB C
;
Humans
;
Apoptosis
;
Oncolytic Viruses/genetics*
;
Oncolytic Virotherapy/methods*
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
;
HT29 Cells
5.Progress in engineering application of human adenovirus.
Yang ZHAO ; Qiwei ZHANG ; Xueshan XIA
Chinese Journal of Biotechnology 2020;36(7):1269-1276
Human adenoviruses are widespread causative agent that induces respiratory diseases, epidemic keratoconjunctivitis and other related diseases. Adenoviruses are commonly used in experimental and clinical areas. It is one of the most commonly used virus vectors in gene therapy, and it has attracted a lot of attention and has a high research potential in tumor gene therapy and virus oncolytic. Here, we summarize the biological characteristics, epidemiology and current application of adenovirus, in order to provide reference for engineering application of adenovirus.
Adenovirus Infections, Human
;
epidemiology
;
virology
;
Adenoviruses, Human
;
genetics
;
Genetic Engineering
;
methods
;
trends
;
Genetic Vectors
;
Humans
;
Oncolytic Virotherapy
;
trends
;
Oncolytic Viruses
;
genetics
;
Virus Replication
6.A novel oncolytic adenovirus inhibits hepatocellular carcinoma growth.
Yu-Huan BAI ; Xiao-Jing YUN ; Yan XUE ; Ting ZHOU ; Xin SUN ; Yan-Jing GAO
Journal of Zhejiang University. Science. B 2019;20(12):1003-1013
OBJECTIVE:
To evaluate the inhibitory role of a novel oncolytic adenovirus (OA), GP73-SphK1sR-Ad5, on the growth of hepatocellular carcinoma (HCC).
METHODS:
GP73-SphK1sR-Ad5 was constructed by integrating Golgi protein 73 (GP73) promoter and sphingosine kinase 1 (SphK1)-short hairpin RNA (shRNA) into adenovirus serotype 5 (Ad5), and transfecting into HCC Huh7 cells and normal human liver HL-7702 cells. The expression of SphK1 and adenovirus early region 1 (E1A) was detected by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Cell viability was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and apoptotic rate was determined by flow cytometry. An Huh7 xenograft model was established in mice injected intratumorally with GP73-SphK1sR-Ad5. Twenty days after injection, the tumor volume and weight, and the survival time of the mice were recorded. The histopathological changes in tumor tissues were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM).
RESULTS:
Transfection of GP73-SphK1sR-Ad5 significantly upregulated E1A and downregulated SphK1 in Huh7 cells, but not in HL7702 cells. GP73-SphK1sR-Ad5 transfection significantly decreased the viability and increased the apoptotic rate of Huh7 cells, but had no effect on HL7702 cells. Intratumoral injection of GP73-SphK1sR-Ad5 into the Huh7 xenograft mouse model significantly decreased tumor volume and weight, and prolonged survival time. It also significantly decreased the tumor infiltration area and blood vessel density, and increased the percentages of cells with nucleus deformation and cells with condensed chromatin in tumor tissues.
CONCLUSIONS
GP73-SphK1sR-Ad5 serves as a novel OA and can inhibit HCC progression with high specificity and efficacy.
Adenoviridae
;
Animals
;
Apoptosis
;
Carcinoma, Hepatocellular/therapy*
;
Cell Line, Tumor
;
Female
;
Liver Neoplasms/therapy*
;
Membrane Proteins/genetics*
;
Mice
;
Mice, Inbred BALB C
;
Oncolytic Virotherapy/methods*
;
Phosphotransferases (Alcohol Group Acceptor)/genetics*
;
Promoter Regions, Genetic
7.Inactivated Sendai Virus Induces ROS-dependent Apoptosis and Autophagy in Human Prostate Cancer Cells.
Miao QIAN ; Hai Ming TAN ; Ning YU ; Tao WANG ; Quan ZHANG
Biomedical and Environmental Sciences 2018;31(4):280-289
OBJECTIVEThe current study aims to investigate the effect of Hemagglutinating virus of Japan envelope (HVJ-E) on induction of apoptosis and autophagy in human prostate cancer PC3 cells, and the underlying mechanisms.
METHODSPC3 cells were treated with HVJ-E at various multiplicity of infection (MOI), and the generated reactive oxygen species (ROS), cell viability, apoptosis, and autophagy were detected, respectively. Next, the role of ROS played in the regulation of HVJ-E-induced apoptosis and autuphagy in PC3 cells were analysed. In the end, the relationship between HVJ-E-induced apoptosis and autuophagy was investigated by using rapamycin and chloroquine.
RESULTSFlow cytometry assay revealed that HVJ-E treatment induced dose-dependent apoptosis and that the JNK and p38 MAPK signaling pathways were involved in HVJ-E-induced apoptosis in PC3 cells. In addition, HVJ-E was able to induce autophagy in PC3 cells via the class III PI3K/beclin-1 pathway. The data also implyed that HVJ-E-triggered autophagy and apoptosis were ROS dependent. When ROS was blocked with N-acetylcysteine (NAC), HVJ-E-induced LC3-II conversion and apoptosis were reversed. Interestingly, HVJ-E-induced apoptosis was significantly increased by an inducer of autophagy, rapamycin pretreatment, both in vitro and in vivo.
CONCLUSIONHVJ-E exerts anticancer effects via autophagic cell death in prostate cancer cells.
Apoptosis ; physiology ; Autophagy ; physiology ; Cell Line, Tumor ; Cell Survival ; Humans ; Male ; Oncolytic Virotherapy ; Prostatic Neoplasms ; metabolism ; Reactive Oxygen Species ; metabolism ; Sendai virus ; immunology ; physiology ; Virus Inactivation
8.Advances in measles virus for cancer therapy.
Journal of Zhejiang University. Medical sciences 2015;44(4):458-464
Oncolytic virotherapy is a novel cancer therapy. Vaccine-attenuated strains of measles virus(MV)is an ideal candidate for oncolytic virotherapy which has an excellent safety record. Vaccine-attenuated MV uses CD46 and Nectin-4 molecule as major entry receptors into cells. Vaccine-attenuated MV can selectively infect and kill a wide variety of cancer cells in vitro and in vivo. With the development of molecular cloning, scientists have successfully rescued cDNA of vaccine-attenuated MV and increased its oncolytic efficiency with molecular engineering techniques. Phase I clinical trials of virotherapy for ovarian cancer and multiple myeloma with vaccine-attenuated MV are underway. The preliminary results indicate the promising antitumor potential of vaccine-attenuated MV.
Clinical Trials, Phase I as Topic
;
Humans
;
Measles virus
;
Neoplasms
;
therapy
;
Oncolytic Virotherapy
9.Advances in research on oncolytic adenoviruses in tumor therapy.
Chinese Journal of Virology 2014;30(3):318-324
Oncolytic adenoviruses (Ads), which are live, replication-competent viruses that can selectively replicate in tumor cells and lead to cell lysis, have been used in tumor therapy. But due to the complexity and high mutability of human tumors, it becomes a major strategy to improve the selectivity, efficacy, and safety of oncolytic Ads. The oncolytic Ads that can express short hairpin RNA, cytokines, suicide gene, and matrix-modulating proteins have higher antitumor activity than the wild type. Tumor-specific promoters, especially hTERT and HRE promoters, increase the selectivity of oncolytic Ads for tumor cells. Moreover, oncolytic Ads surface-modified by polyethylene glycol (PEG), liposomes, biodegradable nanoparticles, and polypeptides have reduced immunogenicity and hepatotoxicity and improved antitumor activity when systemically administered, and the selectivity of oncolytic Ads can be significantly increased when linking PEG to antibodies, small peptides, cytokines, and ligands. Therefore, engineered oncolytic Ads combining the advantages of viral and non-viral vectors, as well as immunotherapy, are a promising strategy for improving the efficacy of targeted virotherapy.
Adenoviridae
;
genetics
;
physiology
;
Animals
;
Humans
;
Neoplasms
;
therapy
;
virology
;
Oncolytic Virotherapy
;
trends
;
Virus Replication
10.Induction of apoptosis in hormone-resistant human prostate cancer PC3 cells by inactivated Sendai virus.
Hui GAO ; Xiao Cheng GONG ; Ze Dong CHEN ; Xiao Shuang XU ; Quan ZHANG ; Xiang Ming XU ;
Biomedical and Environmental Sciences 2014;27(7):506-514
OBJECTIVEInactivated Sendai virus particle [hemagglutinating virus of Japan envelope (HVJ-E)] has a potential oncolytic effect due to its ability to induce apoptosis in tumor cells. However, the molecular mechanism of apoptosis induction in cancer cells mediated by HVJ-E has not been fully elucidated. This paper aims to investigate the underlying mechanism of apoptosis induction by HVJ-E in prostate cancer cells (PC3).
METHODSPC3 cells were treated with HVJ-E at various MOI, and then interferon-β (IFN-β) production, and the cell viability and apoptosis were detected by ELISA, MTT-based assay and flow cytometry, respectively. Next, the roles of Jak-Stat, MAPK and Akt pathways played in HVJ-E-induced apoptosis in PC3 cells were analyzed by immunoblot assay. To further evaluate the cytotoxic effect of HVJ-E on PC3 cells, HVJ-E was intratumorally injected into prostate cancers on BALB/c-nude mice, and the tumor volume was monitored for 36 days.
RESULTSHVJ-E induced IFN-β production and activated Jak-Stat signaling pathway, which resulted in the activation of caspase-8, caspase-3, and PARP in PC3 prostate cancer cells post HVJ-E treatment. Furthermore, we observed for the first time that p38 and Jnk MAPKs in PC3 cells contributed to HVJ-E-induced apoptosis. In addition, intratumoral HVJ-E treatment displayed a direct inhibitory effect in an in vivo BALB/c nude mouse prostate cancer model.
CONCLUSIONOur findings have provided novel insights into the underlying mechanisms by which HVJ-E induces apoptosis in tumor cells.
Animals ; Apoptosis ; Cancer Vaccines ; immunology ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; Male ; Mice ; Mice, Inbred BALB C ; Oncolytic Virotherapy ; Prostatic Neoplasms ; Sendai virus ; immunology ; physiology ; Vaccines, Inactivated ; immunology

Result Analysis
Print
Save
E-mail