1.Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.
Yue PENG ; Min YU ; Bozhao LI ; Siyu ZHANG ; Jin CHENG ; Feifan WU ; Shuailun DU ; Jinbai MIAO ; Bin HU ; Igor A OLKHOVSKY ; Suping LI
Chinese Medical Journal 2025;138(16):1927-1944
Cancer represents a major worldwide disease burden marked by escalating incidence and mortality. While therapeutic advances persist, developing safer and precisely targeted modalities remains imperative. Nanomedicines emerges as a transformative paradigm leveraging distinctive physicochemical properties to achieve tumor-specific drug delivery, controlled release, and tumor microenvironment modulation. By synergizing passive enhanced permeation and retention effect-driven accumulation and active ligand-mediated targeting, nanoplatforms enhance pharmacokinetics, promote tumor microenvironment enrichment, and improve cellular internalization while mitigating systemic toxicity. Despite revolutionizing cancer therapy through enhanced treatment efficacy and reduced adverse effects, translational challenges persist in manufacturing scalability, longterm biosafety, and cost-efficiency. This review systematically analyzes cutting-edge nanoplatforms, including polymeric, lipidic, biomimetic, albumin-based, peptide engineered, DNA origami, and inorganic nanocarriers, while evaluating their strategic advantages and technical limitations across three therapeutic domains: immunotherapy, chemotherapy, and radiotherapy. By assessing structure-function correlations and clinical translation barriers, this work establishes mechanistic and translational references to advance oncological nanomedicine development.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Nanoparticles/chemistry*
;
Animals
;
Nanomedicine/methods*
;
Drug Delivery Systems/methods*
;
Drug Carriers/chemistry*
;
Radiotherapy/methods*
2.Innovative strategies for improving CAR-T cell therapy: A nanomedicine perspective.
Mengyao WANG ; Zhengyu YU ; Liping YUAN ; Peipei YANG ; Caixia JING ; Ying QU ; Zhiyong QIAN ; Ting NIU
Chinese Medical Journal 2025;138(21):2769-2782
Chimeric antigen receptor T (CAR-T) cells have reshaped the treatment landscape of hematological malignancies, offering a potentially curative option for patients. Despite these major milestones in the field of immuno-oncology, growing experience with CAR-T cells has also highlighted several limitations of this strategy. The production process of CAR-T cells is complex, time-consuming, and costly, thus leading to poor drug accessibility. The potential carcinogenic risk of viral transfection systems remains a matter of controversy. Treatment-related side effects, such as cytokine release syndrome, can be life-threatening. And the biggest challenge is the inadequate efficacy related to poor infiltration and retention of CAR-T cells in tumor tissues and impaired T cell activation caused by the immunosuppressive tumor microenvironment (TME). Innovative strategies are urgently needed to address these problems, and nanomedicine offers good solutions to these challenges. In this review, we provide a comprehensive summary of recent advancements in the application of nanomaterials to enhance CAR-T cell therapy. We examine the role of innovative nanoparticle-based delivery systems in the production of CAR-T cells, with a particular focus on polymeric delivery systems and lipid nanoparticles (LNPs). Furthermore, we explore various strategies for delivering immune stimulators, which significantly enhance the efficacy of CAR-T cells by modulating T cell viability and functionality or by reprogramming the immunosuppressive TME. In addition, we discuss several novel therapeutic approaches aimed at mitigating the adverse effects associated with CAR-T therapies. Finally, we offer an integrated perspective on the future challenges and opportunities facing CAR-T therapies.
Humans
;
Nanomedicine/methods*
;
Receptors, Chimeric Antigen/metabolism*
;
Immunotherapy, Adoptive/methods*
;
T-Lymphocytes/immunology*
;
Nanoparticles/chemistry*
;
Animals
3.Rescuing lysosomal/autophagic defects via nanoapproach: implications for lysosomal/autophagic defect-related diseases.
Xiaodan HUANG ; Yue FANG ; Jie SONG ; Yuanjing HAO ; Yuanyuan CAI ; Pengfei WEI ; Na ZHANG
Journal of Zhejiang University. Science. B 2025;26(9):813-842
The dysfunction of the lysosome and autophagy-lysosome system serves as a driving force for neurodegenerative diseases, metabolic disorders, inflammatory conditions, and other related diseases, closely influencing their onset and progression. Therefore, restoring the function of the lysosome or autophagy-lysosome system has become an increasingly crucial therapeutic strategy in disease management. In this review, we will introduce the lysosomal biogenesis, structure, and function, as well as the biological process of the autophagy-lysosome system. Various diseases closely associated with lysosomal/autophagic dysfunction are also reviewed, emphasizing the significance of targeting the function of the lysosome or autophagy-lysosome system in disease treatment. Finally, we focus on engineered nanomaterials that have the capabilities to restore the function of the lysosome or autophagy-lysosome system, and summarize different strategies and methods for achieving this goal. This review aims to elucidate the latest progress in the field of nanomedicine for lysosomal/autophagic defect-related diseases and inspire the development of innovative and clinically valuable nanomedicines.
Humans
;
Lysosomes/physiology*
;
Autophagy/physiology*
;
Nanomedicine/methods*
;
Neurodegenerative Diseases/therapy*
;
Animals
;
Nanostructures
;
Lysosomal Storage Diseases/therapy*
4.Design and inflammation-targeting efficiency assessment of an engineered liposome-based nanomedicine delivery system targeting E-selectin.
Yumeng YE ; Bo YU ; Shasha LU ; Yu ZHOU ; Meihong DING ; Guilin CHENG
Journal of Southern Medical University 2025;45(5):1013-1022
OBJECTIVES:
To develop an E-selectin-targeting nanomedicine delivery system that competitively inhibits E-selectin-neutrophil ligand binding to block neutrophil adhesion to vessels and suppress their recruitment to the lesion sites.
METHODS:
Doxorubicin hydrochloride (DOX)-loaded liposomes (IEL-Lip/DOX) conjugated with E-selectin-affinity peptide IELLQARC were developed using a post-insertion method. Two formulations [2-1P: Mol(PC): Mol(DPI)=100:1; 2-3P: 100:3] were prepared and their modification density and in vitro release characteristics were determined. Their targeting efficacy was assessed in a cell model of LPS-induced inflammation, a mouse model of acute lung injury (ALI), a rat femoral artery model of physical injury-induced inflammation, and a zebrafish model of local inflammation.
RESULTS:
The prepared IEL-Lip/DOX 2-1P and 2-3P had peptide modification densities of 4.76 and 7.57 pmoL/cm2, respectively. Compared with unmodified liposomes, IEL-Lip/DOX exhibited significantly reduced 48-h cumulative release rates at pH 5.5. In the inflammation cell model, IEL-Lip/DOX showed increased uptake by activated inflammatory endothelial cells, and 2-1P exhibited a higher trans-endothelial ability. In ALI mice, the fluorescence intensity of IEL-Lip/Cy5.5 increased significantly in lung tissues by 53.71% [Z-(2-1P)] and 93.41% [Z-(2-3P)], and 2-1P had an increased distribution by 24.19% in the inflammatory lung tissue compared to normal mouse lung tissue. In rat femoral artery models, 2-1P had greater injured/normal vessel fluorescence intensity contrast. In the zebrafish models, both 2-1P and 2-3P showed increased aggregation at the site of inflammation.
CONCLUSIONS
This E-selectin-targeting nanomedicine delivery system efficiently targets activated inflammatory endothelial cells to increase drug concentration at the inflammatory site, which sheds light on new strategies for treating neutrophil-mediated inflammatory diseases and practicing the concept of "one drug for multiple diseases".
Animals
;
Liposomes
;
Rats
;
Nanomedicine
;
E-Selectin
;
Drug Delivery Systems
;
Inflammation/drug therapy*
;
Mice
;
Doxorubicin/analogs & derivatives*
;
Zebrafish
;
Acute Lung Injury/drug therapy*
5.Pure drug nanomedicines - where we are?
Yaoyao LAI ; Bing XIE ; Wanting ZHANG ; Wei HE
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):385-409
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Nanomedicine
;
Humans
;
Nanoparticles/chemistry*
;
Pharmaceutical Preparations/chemistry*
;
Animals
;
Drug Carriers/chemistry*
6.Advances in nanocarriers for targeted drug delivery and controlled drug release.
Yuqian WANG ; Renqi HUANG ; Shufan FENG ; Ran MO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):513-528
Nanocarrier-based drug delivery systems (nDDSs) present significant opportunities for improving disease treatment, offering advantages in drug encapsulation, solubilization, stability enhancement, and optimized pharmacokinetics and biodistribution. nDDSs, comprising lipid, polymeric, protein, and inorganic nanovehicles, can be guided by or respond to biological cues for precise disease treatment and management. Equipping nanocarriers with tissue/cell-targeted ligands enables effective navigation in complex environments, while functionalization with stimuli-responsive moieties facilitates site-specific controlled release. These strategies enhance drug delivery efficiency, augment therapeutic efficacy, and reduce side effects. This article reviews recent strategies and ongoing advancements in nDDSs for targeted drug delivery and controlled release, examining lesion-targeted nanomedicines through surface modification with small molecules, peptides, antibodies, carbohydrates, or cell membranes, and controlled-release nanocarriers responding to endogenous signals such as pH, redox conditions, enzymes, or external triggers like light, temperature, and magnetism. The article also discusses perspectives on future developments.
Humans
;
Drug Carriers/chemistry*
;
Drug Delivery Systems/methods*
;
Delayed-Action Preparations/chemistry*
;
Nanoparticles/chemistry*
;
Animals
;
Drug Liberation
;
Nanomedicine
7.Applications of ferritin nanoparticles in biological fields.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yajun LI ; Longhe ZHAO ; Yang YANG ; Bingzhou LU ; Huanan LIU ; Haixue ZHENG
Chinese Journal of Biotechnology 2025;41(7):2501-2518
Ferritin, a ubiquitous protein in living organisms, plays a crucial role in storing and converting iron, as well as maintaining cellular iron metabolism balance. Due to the ability of self-assembling into unique nanocage-like structures in vitro and the special physicochemical properties, ferritin has garnered extensive attention in the biomedical field. This paper provides a brief overview of the structure and cargo loading strategies of ferritin, with a specific focus on its applications in various biological fields such as nanomedicine, bioimaging, and nanoparticle vaccine carriers. The aim is to offer a valuable reference for the future research involving ferritin nanoparticles.
Ferritins/chemistry*
;
Nanoparticles/chemistry*
;
Humans
;
Nanomedicine/methods*
;
Animals
8.Nanomedicine: The new trend and future of precision medicine for inflammatory bowel disease.
Huanyu LI ; Meng PAN ; Yifan LI ; Hao LIANG ; Manli CUI ; Mingzhen ZHANG ; Mingxin ZHANG
Chinese Medical Journal 2024;137(24):3073-3082
Nanomedicine is an interdisciplinary area that utilizes nanoscience and technology in the realm of medicine. Rapid advances in science and technology have propelled the medical sector into a new era. The most commonly used nanotechnology in the field of medicine is nanoparticles. Due to their unique physicochemical properties, nanoparticles offer significant benefits of precision medicine for diseases such as inflammatory bowel disease that cannot be effectively treated by existing approaches. Nanomedicine has emerged as a highly active research field, with extensive scientific and technological studies being carried out, as well as growing international competition in the commercialization of this field. The accumulation of expertise in the key technologies relating to nanomedicine would provide strategic advantages in the development of cutting-edge medical techniques. This review presented a comprehensive analysis of the primary uses of nanoparticles in medicine, including recent advances in their application for the diagnosis and treatment of inflammatory bowel disease. Furthermore, we discussed the challenges and possibilities associated with the application of nanoparticles in clinical settings.
Inflammatory Bowel Diseases/diagnosis*
;
Humans
;
Precision Medicine/methods*
;
Nanomedicine/methods*
;
Nanoparticles/therapeutic use*
9.Approved natural products-derived nanomedicines for disease treatment.
Xiaotong LI ; Yaoyao LAI ; Guanghan WAN ; Jiahui ZOU ; Wei HE ; Pei YANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1100-1116
In recent years, there has been an increasing emphasis on exploring innovative drug delivery approaches due to the limitations of conventional therapeutic strategies, such as inadequate drug targeting, insufficient therapeutic efficacy, and significant adverse effects. Nanomedicines have emerged as a promising solution with notable advantages, including extended drug circulation, targeted delivery, and improved bioavailability, potentially enhancing the clinical treatment of various diseases. Natural products/materials-derived nanomedicines, characterized by their natural therapeutic efficacy, superior biocompatibility, and safety profile, play a crucial role in nanomedicine-based treatments. This review provides a comprehensive overview of currently approved natural products-derived nanomedicines, emphasizing the essential properties of natural products-derived drug carriers, their applications in clinical diagnosis and treatment, and the current therapeutic potential and challenges. The aim is to offer guidance for the application and further development of these innovative therapeutic approaches.
Animals
;
Humans
;
Biological Products/chemistry*
;
Drug Carriers/chemistry*
;
Drug Delivery Systems
;
Nanomedicine/methods*
10.Conversion of traditional Chinese medicine (TCM) into nanomedicine:application of theory of unification of medicines and excipients.
Hui-Quan HU ; Guo-Wang CHENG ; Yi-Feng WU ; Yu-Tian ZHANG ; Yi WU ; Yi-Qin YANG ; Ming YANG ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2023;48(7):1800-1807
In recent years, the use of active substances as excipients or as substitutes for other excipients in the design of modern drug delivery systems has received widespread attention, which has promoted the development of the theory of unification of medicines and excipients in the design of traditional Chinese medicine(TCM) preparations. Adopting the theory of unification of medicines and excipients to design drug delivery systems can reduce the use of excipients and thus the cost of preparations, reduce drug toxicity, increase drug solubility and biocompatibility, enhance synergistic effect, and realize targeted delivery and simultaneous delivery of multiple components. However, the research on the application of this theory in the modern drug delivery system of TCM preparations is still insufficient, with few relevant articles. In addition, the TCM active substances that can be used as the excipients remain to be catalogued. In this paper, we review the types and applications of the drug delivery systems with TCM active substances as excipients and describe their common construction methods and mechanisms, aiming to provide references for the in-depth research on the modern drug delivery systems for TCM preparations.
Medicine, Chinese Traditional
;
Excipients
;
Drugs, Chinese Herbal
;
Nanomedicine
;
Pharmaceutical Preparations

Result Analysis
Print
Save
E-mail