1.Case of stiff skin syndrome treated with acupuncture and cupping therapy.
Chinese Acupuncture & Moxibustion 2025;45(7):982-984
Stiff skin syndrome is a very rare non-inflammatory reactive skin disease, characterized by skin sclerosis and limited joint mobility. The paper reports one case of child with stiff skin syndrome and treated with combined therapy of acupuncture and cupping. Acupuncture was used at the lateral line 1 of vertex (MS8) on the right side, Jiaji (EX-B2) of L2 to L4, Huantiao (GB30), ashi point, Juliao (GB29), Fengshi (GB31), Weizhong (BL40), and etc. on the left side. After deqi, the electrodes of KWD-808Ⅰimpulse electronic therapeutic device were attached to Jiaji (EX-B2) of L4 and Huantiao (GB30), Fengshi (GB31) and Yanglingquan (GB34) on the left side respectively, at disperse-dense wave, a frequency of 2 Hz/100 Hz, and a current of 2 mA. The needles were retained for 20 min. Acupuncture was operated once every 2 days, 3 interventions a week. When acupuncture was completed in each intervention, moving cupping was followed till the skin turned to be red, along the distribution of the governor vessel, foot-shaoyang gallbladder meridian and foot-taiyang bladder meridian on the left side, of the lumbar region and leg. Moving cupping was delivered once every 2 days, 3 times a week. Once a week, after moving cupping, the cups were retained on the areas with skin stiffness for 8 min to 10 min. One course of the combined therapy of acupuncture and cupping was composed of 6 treatments. After 2 courses of treatment, the skin stiffness on the left buttock region and the lateral side of the lower limb was ameliorated, the swelling on the left lower limb relieved and the walking improved; and the patient could walk continuously for 2 000 m. The combined therapy of acupuncture and cupping provides a new idea for the clinical treatment of stiff skin syndrome.
Child
;
Humans
;
Acupuncture Points
;
Acupuncture Therapy
;
Contracture/therapy*
;
Cupping Therapy
;
Skin Diseases, Genetic/therapy*
2.Tapping with plum-blossom needle combined with sulfur ointment and local irradiation for primary cutaneous amyloidosis: a case report.
Fasen DENG ; Xiao CHEN ; Weijuan ZHENG ; Ziyang HE ; Xinsheng CHEN
Chinese Acupuncture & Moxibustion 2025;45(12):1800-1802
The paper reports one case of primary cutaneous amyloidosis (PCA) treated by tapping with plum-blossom needle combined with sulfur ointment and local irradiation. PCA in this case was manifested as generalized erythema, papules, plaques, lichenification, and severe pruritus. In treatment, tapping with plum-blossom needle was delivered at typical lesions to induce local congestion, redness, and minimal bleeding. After cleaned with sterile gauze for 10 s, 25% sulfur ointment was evenly applied, followed by local irradiation with a TDP lamp for 15 min. This session was repeated twice a week. In 1 month of treatment, the lesions turned flat and the skin was soft as the normal, with pigmentation and mild pruritus left. In 3 months of follow-up, no papules recurred, and mild pruritus presented occasionally.
Humans
;
Ointments/administration & dosage*
;
Sulfur/administration & dosage*
;
Skin Diseases, Genetic/radiotherapy*
;
Middle Aged
;
Amyloidosis, Familial/radiotherapy*
;
Male
;
Acupuncture Therapy/instrumentation*
;
Female
;
Combined Modality Therapy
5.Research progress on the pathogenesis and treatment strategies of Duchenne muscular dystrophy.
Chinese Journal of Contemporary Pediatrics 2025;27(9):1143-1148
Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterized primarily by progressive degeneration and necrosis of skeletal muscle, resulting from mutations in the Dystrophin gene. Patients with DMD typically present with progressive muscle weakness and atrophy during childhood. Currently, available treatment options for DMD remain limited and their efficacy is suboptimal. This review aims to provide a systematic overview of recent advances in therapeutic strategies for DMD, including an analysis of the mechanisms underlying various treatment approaches, outcomes from clinical trials, and their potential clinical applications, in order to inform and guide clinical decision-making.
Muscular Dystrophy, Duchenne/genetics*
;
Humans
;
Genetic Therapy
6.Circadian genes CLOCK and BMAL1 in cancer: mechanistic insights and therapeutic strategies.
Yuli SHEN ; Yuqian ZHAO ; Xue SUN ; Guimei JI ; Daqian XU ; Zheng WANG
Journal of Zhejiang University. Science. B 2025;26(10):935-948
The circadian clock is a highly conserved timekeeping system in organisms, which maintains physiological homeostasis by precisely regulating periodic fluctuations in gene expression. Substantial clinical and experimental evidence has established a close association between circadian rhythm disruption and the development of various malignancies. Research has revealed characteristic alterations in the circadian gene expression profiles in tumor tissues, primarily manifested as a dysfunction of core clock components (particularly circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1)) and the widespread dysregulation of their downstream target genes. Notably, CLOCK demonstrates non-canonical oncogenic functions, including epigenetic regulation via histone acetyltransferase activity and the circadian-independent modulation of cancer pathways. This review systematically elaborates on the oncogenic mechanisms mediated by CLOCK/BMAL1, encompassing multidimensional effects such as cell cycle control, DNA damage response, metabolic reprogramming, and tumor microenvironment (TME) remodeling. Regarding the therapeutic strategies, we focus on cutting-edge approaches such as chrononutritional interventions, chronopharmacological modulation, and treatment regimen optimization, along with a discussion of future perspectives. The research breakthroughs highlighted in this work not only deepen our understanding of the crucial role of circadian regulation in cancer biology but also provide novel insights for the development of chronotherapeutic oncology, particularly through targeting the non-canonical functions of circadian proteins to develop innovative anti-cancer strategies.
Humans
;
ARNTL Transcription Factors/physiology*
;
Neoplasms/therapy*
;
CLOCK Proteins/physiology*
;
Circadian Clocks/genetics*
;
Animals
;
Circadian Rhythm/genetics*
;
Tumor Microenvironment
;
Epigenesis, Genetic
;
Gene Expression Regulation, Neoplastic
7.HOTAIR rs920778 single nucleotide polymorphism is associated with breast cancer susceptibility and HER2-targeted therapy resistance in Chinese population.
Mingliang ZHANG ; Feifan SUN ; Zhuoqi HAN ; Yue GAO ; Yi LUO
Journal of Southern Medical University 2025;45(10):2270-2276
OBJECTIVES:
To investigate the association of HOTAIR gene rs920778 single nucleotide polymorphism (SNP) with breast cancer susceptibility and response to HER2-targeted therapy in a Chinese population.
METHODS:
TaqMan probe-based real-time quantitative PCR was used for genotyping of the rs920778 locus (chr12:54,376,218) in peripheral blood genomic DNA from 287 breast cancer patients and 260 healthy individuals from northern Anhui Province. The genotype (GG, GT and TT) and allele (G/T) distribution frequencies were compared between the two groups to evaluate their association with breast cancer risk. Multivariate logistic regression analysis was conducted to assess the relationship between SNP at this locus and aggressive clinicopathological features (including tumor size, lymph node metastasis, ER/PR/HER2 status, and molecular subtypes) of breast cancer. For the HER2-positive subgroup, the association between rs920778 genotype and responses to dual-targeted therapy (trastuzumab [6 mg/kg q3w]+pertuzumab [420 mg q3w] + docetaxel [75 mg/m²]) was analyzed. The primary endpoints included pathological complete response rate (pCR), objective response rate (ORR), and progression-free survival (PFS).
RESULTS:
The TT genotype of rs920778 was associated with a significantly increased breast cancer susceptibility (OR=1.54, 95% CI: 1.09-2.19; P=0.017), an advanced tumor stage (P<0.001), lymph node metastasis (P<0.001), and the triple-negative subtype (P<0.001). In HER2-positive patients, TT genotype carriers had a markedly reduced objective response rate to dual HER2-targeted therapy (33.3% vs 89.3%, P=0.001) and a lower pathological complete response rate after neoadjuvant therapy (P=0.018).
CONCLUSIONS
The TT genotype of HOTAIR rs920778 serves as an independent risk factor for breast cancer susceptibility and aggressive progression in Chinese population and may predict the resistance to HER2-targeted therapies, suggesting its potential as a prognostic biomarker for precision oncology.
Adult
;
Aged
;
Female
;
Humans
;
Middle Aged
;
Breast Neoplasms/drug therapy*
;
Case-Control Studies
;
China
;
Drug Resistance, Neoplasm/genetics*
;
Genetic Predisposition to Disease
;
Genotype
;
Polymorphism, Single Nucleotide
;
Receptor, ErbB-2
;
RNA, Long Noncoding/genetics*
;
East Asian People/genetics*
8.Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: a long-term follow-up pilot study.
Zhao ZHANG ; Hua JIANG ; Li HUANG ; Sixi LIU ; Xiaoya ZHOU ; Yun CAI ; Ming LI ; Fei GAO ; Xiaoting LIANG ; Kam-Sze TSANG ; Guangfu CHEN ; Chui-Yan MA ; Yuet-Hung CHAI ; Hongsheng LIU ; Chen YANG ; Mo YANG ; Xiaoling ZHANG ; Shuo HAN ; Xin DU ; Ling CHEN ; Wuh-Liang HWU ; Jiacai ZHUO ; Qizhou LIAN
Protein & Cell 2025;16(1):16-27
Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre and early symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with postsymptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over 9 years. The most common adverse events (AEs) within 2 months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with postsymptomatic juvenile MLD.
Humans
;
Leukodystrophy, Metachromatic/genetics*
;
Pilot Projects
;
Genetic Therapy/methods*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Follow-Up Studies
;
Female
;
Lentivirus/genetics*
;
Child
;
Child, Preschool
;
Hematopoietic Stem Cells/metabolism*
;
Cerebroside-Sulfatase/metabolism*
;
Adolescent
9.Advances in gene and cellular therapeutic approaches for Huntington's disease.
Xuejiao PIAO ; Dan LI ; Hui LIU ; Qing GUO ; Yang YU
Protein & Cell 2025;16(5):307-337
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and nonpharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Huntington Disease/pathology*
;
Humans
;
Genetic Therapy/methods*
;
Animals
;
Huntingtin Protein/genetics*
;
Cell- and Tissue-Based Therapy/methods*
10.Laser-assisted spatiotemporal control of Noxa expression in engineering bacteria for treating tumors.
Tingfang GAN ; Naiming ZHENG ; Huifeng LI ; Jinrui XU ; Ningning WU ; Lixin MA ; Yunhong HU
Chinese Journal of Biotechnology 2025;41(8):3199-3213
Bacterial therapy has attracted increasing attention due to its special mechanism and abundant applications. With the flourishing development of synthetic biology, therapeutic genes have been introduced into engineering bacteria to improve their antitumor efficacy. However, it is difficult to spatiotemporally control the expression of these therapeutic genes at the tumor site in vivo, thereby considerably limiting the application of engineered bacteria in tumor treatment. To resolve this problem, we constructed a temperature-responsive bacterial strain capable of triggering the expression of exogenous genes in a laser-controllable way. Noxa, a pro-apoptotic protein, is chosen to test the expression of exogenous protein and its anti-tumor effect in engineered bacteria upon laser irradiation. Firstly, Noxa was fused to the C-terminus of the bacterial outer membrane protein cytolysin A (ClyA), and then the recombinant gene fragment ClyA-Noxa was inserted into the temperature-sensitive plasmid pBV220 and the recombinant plasmid was transformed into non-pathogenic Escherichia coli MG1655. Thus, we constructed the engineering strain (TRB@Noxa) that could express Noxa on the bacterial surface. TRB@Noxa could target and colonize the tumor tissue without causing notable host toxicity. The bacterial infection triggered thrombosis in the tumor tissue, resulting in the darkness of tumor sites. In a xenograft mouse tumor model, our strategy demonstrated precise tumor targeting and strong tumor inhibition. In conclusion, we successfully constructed a new engineering bacterial strain TRB@Noxa. TRB@Noxa combined with photothermal therapy could arrest tumor growth in the absence of photosensitizers, which represents an appealing method for antitumor therapy in the future.
Escherichia coli/radiation effects*
;
Animals
;
Humans
;
Lasers
;
Mice
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Neoplasms/therapy*
;
Genetic Engineering
;
Cell Line, Tumor
;
Escherichia coli Proteins/genetics*

Result Analysis
Print
Save
E-mail