3.Detection and clinical significance of NTRK in digestive system neoplasms.
X J HOU ; Y FU ; X H PU ; X S FAN
Chinese Journal of Pathology 2023;52(8):876-880
8.Characteristics of fusion gene expression in acute lymphoblastic leukemia.
Xian Qi HUANG ; Ya Ni LIN ; En Bin LIU ; Fei XING ; Zhe WANG ; Xue Jing CHEN ; Long CHEN ; Jing Ting MA ; Ying Chang MI ; Kun RU
Chinese Journal of Pathology 2022;51(4):307-313
Objective: To analyze the genetic landscape of 52 fusion genes in patients with de novo acute lymphoblastic leukemia (ALL) and to investigate the characteristics of other laboratory results. Methods: The fusion gene expression was retrospectively analyzed in the 1 994 patients with de novo ALL diagnosed from September 2016 to December 2020. In addition, their mutational, immunophenotypical and karyotypical profiles were investigated. Results: In the 1 994 patients with ALL, the median age was 12 years (from 15 days to 89 years). In the panel of targeted genes, 15 different types of fusion genes were detected in 884 patients (44.33%) and demonstrated a Power law distribution. The frequency of detectable fusion genes in B-cell ALL was significantly higher than that in T-cell ALL (48.48% vs 18.71%), and fusion genes were almost exclusively expressed in B-cell ALL or T-cell ALL. The number of fusion genes showed peaks at<1 year, 3-5 years and 35-44 years, respectively. More fusion genes were identified in children than in adults. MLL-FG was most frequently seen in infants and TEL-AML1 was most commonly seen in children, while BCR-ABL1 was dominant in adults. The majority of fusion gene mutations involved signaling pathway and the most frequent mutations were observed in NRAS and KRAS genes. The expression of early-stage B-cell antigens varied in B-cell ALL patients. The complex karyotypes were more common in BCR-ABL1 positive patients than others. Conclusion: The distribution of fusion genes in ALL patients differs by ages and cell lineages. It also corresponds to various gene mutations, immunophenotypes, and karyotypes.
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Child
;
Child, Preschool
;
Gene Expression
;
Genes, ras
;
Humans
;
Infant
;
Infant, Newborn
;
Middle Aged
;
Oncogene Fusion
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Retrospective Studies
;
Young Adult
10.Effects of interferon regulatory factor 9 on the biological phenotypes in PML-RARα-induced promyelocytic leukemia.
Xue YANG ; Hai Yan XING ; Ke Jing TANG ; Zheng TIAN ; Qing RAO ; Min WANG ; Jian Xiang WANG
Chinese Journal of Hematology 2022;43(5):370-375
Objective: To investigate the prognostic significance of interferon regulatory factor 9 (IRF9) expression and identify its role as a potential therapeutic target in acute promyelocytic leukemia (APL) . Methods: The gene expression profile and survival data applied in the bioinformatic analysis were obtained from The Cancer Genome Atlas and Beat acute myeloid leukemia (AML) cohorts. A dox-induced lentiviral system was used to induce the expression of PML-RARα (PR) in U937 cells, and the expression level of IRF9 in U937 cells treated with or without ATRA was examined. We then induced the expression of IRF9 in NB4, a promyelocytic leukemia cell line. In vitro studies focused on leukemic phenotypes triggered by IRF9 expression. Results: ①Bioinformatic analysis of the public database demonstrated the lowest expression of IRF9 in APL among all subtypes of AML, with lower expression associated with worse prognosis. ②We successfully established a PR-expression-inducible U937 cell line and found that IRF9 was downregulated by the PR fusion gene in APL, with undetectable expression in NB4 promyelocytic cells. ③An IRF9-inducible NB4 cell line was successfully established. The inducible expression of IRF9 promoted the differentiation of NB4 cells and had a synergistic effect with lower doses of ATRA. In addition, the inducible expression of IRF9 significantly reduced the colony formation capacity of NB4 cells. Conclusion: In this study, we found that the inducible expression of PR downregulates IRF9 and can be reversed by ATRA, suggesting a specific regulatory relationship between IRF9 and the PR fusion gene. The induction of IRF9 expression in NB4 cells can promote cell differentiation as well as reduce the colony forming ability of leukemia cells, implying an anti-leukemia effect for IRF9, which lays a biological foundation for IRF9 as a potential target for the treatment of APL.
Cell Differentiation
;
Humans
;
Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism*
;
Leukemia, Myeloid, Acute/drug therapy*
;
Leukemia, Promyelocytic, Acute/genetics*
;
Oncogene Proteins, Fusion/metabolism*
;
Phenotype
;
Tretinoin/therapeutic use*
;
U937 Cells

Result Analysis
Print
Save
E-mail