1.Multidrug resistance of Helicobacter pylori and its impact on the diagnosis and treatment of gastrointestinal diseases and countermeasures.
Xiya YAN ; Canlin ZHENG ; Zhihui TANG ; Youjun FENG ; Baoning WANG
Chinese Journal of Biotechnology 2025;41(4):1240-1251
Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and other gastrointestinal diseases. The World Health Organization has classified H. pylori as a group Ⅰ carcinogen. Antibiotics are the primary clinical approach for eradicating H. pylori. However, incomplete eradication of H. pylori by antibiotics can lead to persistent infection, which is a major risk factor for the high incidence of gastric cancer. The widespread use of antibiotics has led to the emergence of multidrug resistance in H. pylori, contributing to treatment failures of chronic gastric diseases and increasing the risk of spreading resistant strains. Multidrug-resistant H. pylori has become a serious challenge in the diagnosis and treatment of gastrointestinal diseases. This paper reviews the global trends in the development of multidrug resistance in H. pylori, the underlying mechanisms, the challenges it poses to clinical diagnosis, and its impact on drug development, drawing on relevant literature and the research findings from our group. It proposes using cgt expression as a novel method for determining viable bacteria, identifying intracellularization as a new form of resistance in H. pylori, and exploring the potential of O-glycans as a therapeutic approach against H. pylori to address multidrug resistance. It provides new insights into understanding the mechanisms of H. pylori multidrug resistance and its prevention strategies, offering promising directions for future clinical treatments and antimicrobial drug development.
Helicobacter pylori/genetics*
;
Humans
;
Drug Resistance, Multiple, Bacterial
;
Helicobacter Infections/microbiology*
;
Anti-Bacterial Agents/therapeutic use*
;
Gastrointestinal Diseases/drug therapy*
2.Research progress in silver ion tolerance mechanisms of Escherichia coli.
Yuhuang WU ; Xi ZHENG ; Haoyue AN ; Shuchu SHEN ; Zhongbao WU ; Su ZHOU ; Jun WANG ; Lili ZOU
Chinese Journal of Biotechnology 2025;41(4):1252-1267
Due to the wide application of silver-containing dressings and silver-coated medical devices in clinical treatment; the extensive use of antibacterial agents and heavy metal agents in feed factories, Escherichia coli has formed the tolerance to silver ions. To systematically understand the known silver ion resistance mechanisms of E. coli, this article reviews the complex regulatory network and various physiological mechanisms of silver ion tolerance in E. coli, including the regulation of outer membrane porins, energy metabolism modulation, the role of efflux systems, motility regulation, and silver ion reduction. E. coli reduces the influx of silver ions by missing or mutating outer membrane porins such as OmpR, OmpC, and OmpF. It adapts to high concentrations of silver ions by altering the expression of ArcA/B and enhances the efflux capacity of silver ions under high-concentration silver stress via the endogenous Cus system and exogenous Sil system. Furthermore, the motility of bacteria is related to silver tolerance. E. coli has the ability to reduce silver ions, thereby alleviating the oxidative stress induced by silver ions. These findings provide a new perspective for understanding the formation and spread of bacterial tolerance and provide directions for the development of next-generation silver-based antimicrobials and therapies.
Escherichia coli/genetics*
;
Silver/pharmacology*
;
Drug Resistance, Bacterial
;
Anti-Bacterial Agents/pharmacology*
;
Porins/metabolism*
3.Molecular epidemiology and antibiotic resistance of Pseudomonas aeruginosa isolated from blood in a hospital in Shandong Province from 2014 to 2021.
Jia Zheng WANG ; Xiu Tao DONG ; Xiao Ning ZHANG ; Piao DENG ; Fang CHENG ; Wan Shan MA
Chinese Journal of Preventive Medicine 2023;57(10):1558-1564
Objective: To identify the antibiotic resistance, virulence genes, and sequence types of Pseudomonas aeruginosa (P. aeruginosa) strains isolated from blood. Methods: From November 2014 to December 2021, a total of 94 nonrepetitive P. aeruginosa isolates were obtained from blood samples of patients at the First Affiliated Hospital of Shandong First Medical University in Shandong Province, China. The bacteria were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry. Antibiotic resistance of the P. aeruginosa isolates was detected using Vitek 2 Compact system. Polymerase chain reaction (PCR) was conducted for the 18 virulence genes, and multi locus sequence typing (MLST) was performed to identify the sequence types of the P. aeruginosa strains. The resistance rates and distributions of virulence genes between carbapenem resistant pseudomonas aeruginosa (CRPA) and carbapenem susceptible pseudomonas aeruginosa (CSPA) isolates were compared using the Chi-square test. Results: Among 94 P. aeruginosa isolates, 19 (20.2%) isolates were found to be multidrug resistant (MDR) bacteria, of which 17 were CRPA isolates and 2 were CSPA isolates. All strains contained more than 10 virulence genes. Except for exoU gene, the detection rate of other genes was above 83%. MLST analysis revealed a total of 66 different STs, including 59 existing STs and 7 novel STs. Among them, ST244 (n=11, 11.7%) and ST270 (n=7, 7.4%) were the dominant STs. Although these two types of isolates harbored the same virulence genes, the resistance rates to carbapenem were different. 54.5% (6/11) ST244 isolates were CRPA but all 7 ST270 isolates were CSPA. Conclusion: Although the resistance rates of P. aeruginosa strains isolated from blood were at a low level, some MDR and CRPA isolates were detected. As the high virulence gene detection rates and genetic diversity were found for P. aeruginosa strains isolated from blood, close attention should be paid to avoid transmission and outbreaks.
Humans
;
Pseudomonas aeruginosa/genetics*
;
Multilocus Sequence Typing
;
Molecular Epidemiology
;
Pseudomonas Infections/microbiology*
;
Microbial Sensitivity Tests
;
Hospitals
;
Carbapenems/pharmacology*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
beta-Lactamases
4.Antimicrobial resistance and genomic characterization of Campylobacter isolates recovered from retailed poultry meat samples in 20 provinces of China in 2020.
Chang Wei WANG ; Yao BAI ; Shao Ting LI ; Zi Xin PENG ; Da Jin YANG ; Yin Ping DONG ; Jing XIAO ; Wei WANG ; Feng Qin LI
Chinese Journal of Preventive Medicine 2023;57(12):2086-2094
Objective: To understand the antimicrobial resistance and genome characteristics of Campylobacter isolates recovered from retailed poultry meat samples in 20 provinces in China in 2020. Methods: In 2020, 265 Campylobacter strains including 244 Campylobacter jejuni and 21 Campylobacter coli collected from retailed poultry meat samples in China were tested for antimicrobial resistance to 9 antimicrobial compounds by using the agar dilution method. Forty-two selected isolates were sent for whole genome sequencing and 38 high-quality genomes were analyzed for their antimicrobial resistance genes, virulence genes, sequence types and genetic diversity. Results: The resistance rates of Campylobacter isolates from poultry meats to tetracycline, nalidixic acid and ciprofloxacin were the highest (84%-100%), with 53.2% of the isolates showing multidrug resistance in this study. The resistance rates of C. coli to erythromycin, azithromycin, telithromycin, gentamicin and clindamycin were significantly higher than those of C. jejuni (P<0.05). The resistance genes conferring resistance to β-lactams (100%, 38/38), quinolones (94.7%, 36/38), tetracycline (81.6%, 31/38) and aminoglycosides (50%, 19/38) were the most frequently detected among 38 Campylobacter genomes. C. jejuni carried more virulence genes than C. coli. In total, 19 and 17 sequence types (ST) were obtained from 20 sequenced C. jejuni and 18 C. coli isolates, respectively, including 5 novel STs. The isolates showed a high genetic diversity based on their sequence types. Conclusion: The phenomenon of antimicrobial resistance in Campylobacter from poultry meat sources in China is relatively serious, and resistance and virulence genes are widely distributed in Campylobacter. There is genetic diversity in Campylobacter.
Humans
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Campylobacter/genetics*
;
Poultry
;
Drug Resistance, Bacterial/genetics*
;
Genomics
;
China
;
Tetracycline
5.Molecular epidemiology and antibiotic resistance of Pseudomonas aeruginosa isolated from blood in a hospital in Shandong Province from 2014 to 2021.
Jia Zheng WANG ; Xiu Tao DONG ; Xiao Ning ZHANG ; Piao DENG ; Fang CHENG ; Wan Shan MA
Chinese Journal of Preventive Medicine 2023;57(10):1558-1564
Objective: To identify the antibiotic resistance, virulence genes, and sequence types of Pseudomonas aeruginosa (P. aeruginosa) strains isolated from blood. Methods: From November 2014 to December 2021, a total of 94 nonrepetitive P. aeruginosa isolates were obtained from blood samples of patients at the First Affiliated Hospital of Shandong First Medical University in Shandong Province, China. The bacteria were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry. Antibiotic resistance of the P. aeruginosa isolates was detected using Vitek 2 Compact system. Polymerase chain reaction (PCR) was conducted for the 18 virulence genes, and multi locus sequence typing (MLST) was performed to identify the sequence types of the P. aeruginosa strains. The resistance rates and distributions of virulence genes between carbapenem resistant pseudomonas aeruginosa (CRPA) and carbapenem susceptible pseudomonas aeruginosa (CSPA) isolates were compared using the Chi-square test. Results: Among 94 P. aeruginosa isolates, 19 (20.2%) isolates were found to be multidrug resistant (MDR) bacteria, of which 17 were CRPA isolates and 2 were CSPA isolates. All strains contained more than 10 virulence genes. Except for exoU gene, the detection rate of other genes was above 83%. MLST analysis revealed a total of 66 different STs, including 59 existing STs and 7 novel STs. Among them, ST244 (n=11, 11.7%) and ST270 (n=7, 7.4%) were the dominant STs. Although these two types of isolates harbored the same virulence genes, the resistance rates to carbapenem were different. 54.5% (6/11) ST244 isolates were CRPA but all 7 ST270 isolates were CSPA. Conclusion: Although the resistance rates of P. aeruginosa strains isolated from blood were at a low level, some MDR and CRPA isolates were detected. As the high virulence gene detection rates and genetic diversity were found for P. aeruginosa strains isolated from blood, close attention should be paid to avoid transmission and outbreaks.
Humans
;
Pseudomonas aeruginosa/genetics*
;
Multilocus Sequence Typing
;
Molecular Epidemiology
;
Pseudomonas Infections/microbiology*
;
Microbial Sensitivity Tests
;
Hospitals
;
Carbapenems/pharmacology*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
beta-Lactamases
6.Antimicrobial resistance and genomic characterization of Campylobacter isolates recovered from retailed poultry meat samples in 20 provinces of China in 2020.
Chang Wei WANG ; Yao BAI ; Shao Ting LI ; Zi Xin PENG ; Da Jin YANG ; Yin Ping DONG ; Jing XIAO ; Wei WANG ; Feng Qin LI
Chinese Journal of Preventive Medicine 2023;57(12):2086-2094
Objective: To understand the antimicrobial resistance and genome characteristics of Campylobacter isolates recovered from retailed poultry meat samples in 20 provinces in China in 2020. Methods: In 2020, 265 Campylobacter strains including 244 Campylobacter jejuni and 21 Campylobacter coli collected from retailed poultry meat samples in China were tested for antimicrobial resistance to 9 antimicrobial compounds by using the agar dilution method. Forty-two selected isolates were sent for whole genome sequencing and 38 high-quality genomes were analyzed for their antimicrobial resistance genes, virulence genes, sequence types and genetic diversity. Results: The resistance rates of Campylobacter isolates from poultry meats to tetracycline, nalidixic acid and ciprofloxacin were the highest (84%-100%), with 53.2% of the isolates showing multidrug resistance in this study. The resistance rates of C. coli to erythromycin, azithromycin, telithromycin, gentamicin and clindamycin were significantly higher than those of C. jejuni (P<0.05). The resistance genes conferring resistance to β-lactams (100%, 38/38), quinolones (94.7%, 36/38), tetracycline (81.6%, 31/38) and aminoglycosides (50%, 19/38) were the most frequently detected among 38 Campylobacter genomes. C. jejuni carried more virulence genes than C. coli. In total, 19 and 17 sequence types (ST) were obtained from 20 sequenced C. jejuni and 18 C. coli isolates, respectively, including 5 novel STs. The isolates showed a high genetic diversity based on their sequence types. Conclusion: The phenomenon of antimicrobial resistance in Campylobacter from poultry meat sources in China is relatively serious, and resistance and virulence genes are widely distributed in Campylobacter. There is genetic diversity in Campylobacter.
Humans
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Campylobacter/genetics*
;
Poultry
;
Drug Resistance, Bacterial/genetics*
;
Genomics
;
China
;
Tetracycline
7.Characterization of Mutations in Genes Related to Rifampicin and Isoniazid Resistance in Multidrug-resistant Mycobacterium tuberculosis Strains from Hangzhou, China.
Yin Yan HUANG ; Li XIE ; Yi Fei WU ; Qing Jun JIA ; Qing Lin CHENG ; Qing Chun LI ; Li Yun AI ; Xue Xin BAI
Biomedical and Environmental Sciences 2023;36(9):869-873
Humans
;
Isoniazid/pharmacology*
;
Mycobacterium tuberculosis/genetics*
;
Rifampin/pharmacology*
;
Antitubercular Agents/pharmacology*
;
Mutation
;
Microbial Sensitivity Tests
;
Tuberculosis, Multidrug-Resistant/microbiology*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Bacterial Proteins/genetics*
8.Clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae.
Cui Fang SHEN ; Xiao Xiang ZHANG ; Chao Chi BAO
Chinese Journal of Preventive Medicine 2023;57(3):416-421
To explore the clinical distribution and drug resistance characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP), in order to provide reference for the prevention and treatment of CRKP infection. Retrospective analysis was performed on 510 clinical isolates of CRKP from January 2017 to December 2021, and strain identification and drug sensitivity tests were conducted by MALDI-TOF mass spectrometer and VITEK-2 Compact microbial drug sensitivity analyzer. The carbapenemase phenotype of CRKP strain was detected by carbapenemase inhibitor enhancement test. The CRKP strain was further categorized by immunochromogenic method and polymerase chain reaction (PCR) was used for gene detection. The results showed that 302 strains (59.2%) were derived from sputum, 127 strains (24.9%) from urine and 47 strains (9.2%) from blood. 231 (45.3%) were mainly distributed in intensive care, followed by 108 (21.2%) in respiratory medicine and 79 (15.5%) in neurosurgery. Drug susceptibility test result shows that the resistant rate of tigecycline increased from 1.0% in 2017 to 10.1% in 2021, the difference was statistically significant (χ2=14.444,P<0.05). The results of carbapenemase inhibitor enhancement test showed that 461 carbapenemase strains (90.4%) of 510 CRKP strains, including 450 serinase strains (88.2%), 9 metalloenzyme strains (1.8%), and 2 strains (0.4%) produced both serine and metalloenzyme. 49 strains (9.6%) did not produce enzymes. Further typing by immunochromogenic assay showed that 461 CRKP strains were KPC 450 (97.6%) and IMP 2 (0.4%). 7 NDM (1.5%); 2 strains of KPC+NDM (0.4%); PCR results were as follows: 450 strains of blaKPC (97.6%), 2 strains of blaIMP (0.4%), 7 strains of blaNDM (1.5%), and 2 strains of blaKPC+NDM (0.4%). In conclusion, CRKP strains mainly originated from sputum specimens and distributed in intensive care department, and the drug resistance characteristics were mainly KPC type in carbapenemase production. Clinical microbiology laboratory should strengthen the monitoring of CRKP strains, so as to provide reference for preventing CRKP infection and reducing the production of bacterial drug resistance.
Anti-Bacterial Agents/pharmacology*
;
Carbapenems/pharmacology*
;
Klebsiella pneumoniae/genetics*
;
Hospital Distribution Systems
;
Retrospective Studies
;
Microbial Sensitivity Tests
;
beta-Lactamases/genetics*
;
Bacterial Proteins/genetics*
;
Drug Resistance, Bacterial/genetics*
9.The past, present and future of tuberculosis treatment.
Kefan BI ; Dan CAO ; Cheng DING ; Shuihua LU ; Hongzhou LU ; Guangyu ZHANG ; Wenhong ZHANG ; Liang LI ; Kaijin XU ; Lanjuan LI ; Ying ZHANG
Journal of Zhejiang University. Medical sciences 2023;51(6):657-668
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Humans
;
Pyrazinamide/therapeutic use*
;
Isoniazid/therapeutic use*
;
Antitubercular Agents/therapeutic use*
;
Tuberculosis, Multidrug-Resistant/microbiology*
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis/drug therapy*
;
Rifampin/therapeutic use*
;
Mutation
;
Drug Resistance, Multiple, Bacterial/genetics*
10.Evaluation of Microsphere-based xMAP Test for gyrA Mutation Identification in Mycobacterium Tuberculosis.
Xi Chao OU ; Bing ZHAO ; Ze Xuan SONG ; Shao Jun PEI ; Sheng Fen WANG ; Wen Cong HE ; Chun Fa LIU ; Dong Xin LIU ; Rui Da XING ; Hui XIA ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2023;36(4):384-387

Result Analysis
Print
Save
E-mail