1.Effects of sulforaphane on brain mitochondria: mechanistic view and future directions.
Fernanda Rafaela JARDIM ; Fhelipe Jolner Souza de ALMEIDA ; Matheus Dargesso LUCKACHAKI ; Marcos Roberto de OLIVEIRA
Journal of Zhejiang University. Science. B 2020;21(4):263-279
The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.
Animals
;
Antioxidants/pharmacology*
;
Apoptosis/drug effects*
;
Brain/ultrastructure*
;
Carbon Monoxide Poisoning/metabolism*
;
Cytoprotection
;
Humans
;
Isothiocyanates/pharmacology*
;
Membrane Potential, Mitochondrial/drug effects*
;
Mitochondria/metabolism*
;
Sulfoxides
2.Anti-Helicobacter pylori, Anti-apoptotic, and Cytoprotective Effects of Threonine Synthesized from Corynebacterium glutamicum in Gastric Epithelial Cells
Jeong Min AN ; Yang Soo KIM ; Young Gi HONG ; Bong Soo HAH ; Mi Seo SOHN ; Ki Baik HAHM
The Korean Journal of Helicobacter and Upper Gastrointestinal Research 2019;19(4):245-256
BACKGROUND/AIMS: Among irritants causing gastric ulcer, Helicobacter pylori (H. pylori) might be pivotal, after which eradication became essential way in either inhibiting ulcerogenesis or preventing ulcer recurrence. Since threonine is essential in either mucus synthesis or cytoprotection, we hypothesized that the dietary threonine from Corynebacterium glutamicum (C. glutamicum) can mitigate the cytotoxicity of H. pylori infection.MATERIALS AND METHODS: RGM-1 cells were challenged with 100 multiplicity of infection H. pylori for 6 hours, during which threonine alone or combination with Corynebacterium sp. was administered and compared for anti-Helicobacter, anti-inflammation, anti-oxidative, and cytoprotective actions.RESULTS: Threonine alone or combination of threonine and C. glutamicum yielded significant bacteriostatic outcomes. The increased expressions of interleukin (IL)-1β, IL-8, Cox-2, and iNOS mRNA after H. pylori infection were significantly decreased with either threonine alone or the combination of threonine and C. glutamicum. The elevated expressions of NF-kB, HIF-1a, and c-jun after H. pylori infection were all significantly decreased with the combination of threonine and broth from C. glutamicum (P < 0.05), leading to significant decreases in 2′,7′-dichlorofluorescein-diacetate (P < 0.01). Tracing further host antioxidative response, the attenuated expression of heme oxygenase-1, Nrf2, and dehydrogenase quinone-1 after H. pylori infection was significantly preserved with combination of threonine and C. glutamicum. H. pylori infection led to significant increases in apoptosis accompanied with Bcl-2 decreases and Bax increases, while the combination of threonine and C. glutamicum significantly attenuated apoptosis, in which attenuated EGF, TGF-β, and VEGF were significantly regulated, while β-catenin did not change.CONCLUSIONS: Threonine synthesized from C. glutamicum significantly alleviated the cytotoxicity of H. pylori in gastric epithelial cells.
Apoptosis
;
Corynebacterium glutamicum
;
Corynebacterium
;
Cytoprotection
;
Epidermal Growth Factor
;
Epithelial Cells
;
Helicobacter pylori
;
Heme Oxygenase-1
;
Interleukin-8
;
Interleukins
;
Irritants
;
Mucus
;
NF-kappa B
;
Oxidative Stress
;
Oxidoreductases
;
Recurrence
;
RNA, Messenger
;
Stomach Ulcer
;
Thiram
;
Threonine
;
Ulcer
;
Vascular Endothelial Growth Factor A
3.Effects and Mechanisms of Taurine as a Therapeutic Agent.
Biomolecules & Therapeutics 2018;26(3):225-241
Taurine is an abundant, β-amino acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.
Acidosis, Lactic
;
Arthritis
;
Brain Diseases
;
Calcium
;
Cardiovascular System
;
Central Nervous System
;
Cytoprotection
;
Energy Metabolism
;
Gene Expression
;
Heart Failure
;
Japan
;
MELAS Syndrome
;
Metabolic Diseases
;
Mitochondrial Diseases
;
Neurodegenerative Diseases
;
Pathology
;
Quality Control
;
Taurine*
4.APEX1 Polymorphism and Mercaptopurine-Related Early Onset Neutropenia in Pediatric Acute Lymphoblastic Leukemia.
Hyery KIM ; Heewon SEO ; Yoomi PARK ; Byung Joo MIN ; Myung Eui SEO ; Kyung Duk PARK ; Hee Young SHIN ; Ju Han KIM ; Hyoung Jin KANG
Cancer Research and Treatment 2018;50(3):823-834
PURPOSE: Mercaptopurine (MP) is one of the main chemotherapeutics for acute lymphoblastic leukemia (ALL). To improve treatment outcomes, constant MP dose titration is essential to maintain steady drug exposure, while minimizing myelosuppression. We performed two-stage analyses to identify genetic determinants of MP-related neutropenia in Korean pediatric ALL patients. MATERIALS AND METHODS: Targeted sequencing of 40 patients who exhibited definite MP intolerance was conducted using a novel panel of 211 pharmacogenetic-related genes, and subsequent analysis was performed with 185 patients. RESULTS: Using bioinformatics tools and genetic data, four functionally interesting variants were selected (ABCC4, APEX1, CYP1A1, and CYP4F2). Including four variants, 23 variants in 12 genes potentially linked to MP adverse reactions were selected as final candidates for subsequent analysis in 185 patients. Ultimately, a variant allele in APEX1 rs2307486was found to be strongly associated with MP-induced neutropenia that occurred within 28 days of initiating MP (odds ratio, 3.44; p=0.02). Moreover, the cumulative incidence of MP-related neutropenia was significantly higher in patients with APEX1 rs2307486 variants, as GG genotypes were associated with the highest cumulative incidence (p < 0.01). NUDT15 rs116855232 variants were strongly associated with a higher cumulative incidence of neutropenia (p < 0.01), and a lower median dose of tolerated MP throughout maintenance treatment (p < 0.01). CONCLUSION: We have identified that APEX1 rs2307486 variants conferred an increased risk of MP-related early onset neutropenia. APEX1 and NUDT15 both contribute to cell protection from DNA damage or misincorporation, so alleles that impair the function of either gene may affect MP sensitivities, thereby inducing MP-related neutropenia.
6-Mercaptopurine
;
Alleles
;
Computational Biology
;
Cytochrome P-450 CYP1A1
;
Cytoprotection
;
DNA Damage
;
Genotype
;
Humans
;
Incidence
;
Neutropenia*
;
Pediatrics
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma*
5.Research advances in the protective effect of all-trans retinoic acid against podocyte injury.
Chinese Journal of Contemporary Pediatrics 2017;19(6):719-723
All-trans retinoic acid (ATRA) is a vitamin A derivative and plays an important role in the regulation of cell aggregation, differentiation, apoptosis, proliferation, and inflammatory response. In recent years, some progress has been made in the role of ATRA in renal diseases, especially its protective effect on podocytes. This article reviews the research advances in podocyte injury, characteristics of ATRA, podocyte differentiation and regeneration induced by ATRA, and the protective effect of ATRA against proliferation, deposition of fibers, and apoptosis.
Apoptosis
;
drug effects
;
Cell Differentiation
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cytoprotection
;
Humans
;
Podocytes
;
drug effects
;
physiology
;
Tretinoin
;
pharmacology
6.Ethanol extract of Phellinus merrillii protects against diethylnitrosamine- and 2-acetylaminofluorene-induced hepatocarcinogenesis in rats.
Chun-Hung YANG ; Heng-Yuan CHANG ; Yi-Chuan CHEN ; Chia-Chen LU ; Shyh-Shyun HUANG ; Guan-Jhong HUANG ; Hsin-Chih LAI
Chinese journal of integrative medicine 2017;23(2):117-124
OBJECTIVETo study whether the ethanol extract of Phellinus merrillii (EPM) has chemopreventive potential against liver carcinogenesis.
METHODSThirty male Spraque-Dawley rats were randomly divided into control group, EPM control group, hepatocarcinoma control group, low-dose EPM group and high-dose EPM group, 6 in each group. Using the Solt and Farber protocol in a rat model of hepatocarcinogenesis, the chemopreventive effect of EPM on diethylnitrosamine (DEN)-initiated, 2-acetylaminofluorene (2-AAF) and partial hepatectomy (PH)-promoted liver carcinogenesis in rats was evaluated. Basic pathophysiological and histological examinations, together with the serum levels of glutamic oxaloacetic transaminase (sGOT), glutamic pyruvic transaminase (sGPT) and gamma-glutamyl transpeptidase (γ-GT) were measured.
RESULTSTreatment of EPM at the concentration of 2 g/kg body weight in the diet for 8 weeks clearly prevented the development of carcinogenesis and reduced the levels of sGOT, sGPT, and serum γ-GT of rats as compared with the hepatocarcinoma control group (P<0.05 or P<0.01). These phenotypes were accompanied by a significant increase in natural killer cell activity.
CONCLUSIONEPM showed a strong liver preventive effect against DEN+2-AAF+PH-induced hepatocarcinogenesis in a rat model.
2-Acetylaminofluorene ; Animals ; Basidiomycota ; chemistry ; Carcinogenesis ; chemically induced ; Cytoprotection ; drug effects ; Diethylnitrosamine ; Ethanol ; chemistry ; Liver Neoplasms, Experimental ; chemically induced ; prevention & control ; Male ; Plant Extracts ; chemistry ; pharmacology ; Protective Agents ; pharmacology ; Rats ; Rats, Sprague-Dawley
7.Streptococcus pneumoniae induces SPLUNC1 and the regulatory effects of resveratrol.
Yan-Ping SHANG ; Li LIN ; Chang-Chong LI
Chinese Journal of Contemporary Pediatrics 2017;19(1):111-116
OBJECTIVETo investigate the host-defense role of short palate, lung, and nasal epithelium clone 1 (SPLUNC1) in Streptococcus pneumoniae (SP) infection and the effect of resveratrol (Res) on SPLUNC1 expression, and to provide new thoughts for the treatment of diseases caused by SP infection.
METHODSAccording to the multiplicity of infection (MOI), BEAS-2B cells with SP infection were divided into control group, MOI20 SP group, and MOI50 SP group. According to the different concentrations of Res, the BEAS-2B cells with MOI20 SP infection pretreated by Res were divided into 12.5Res+SP group, 25Res+SP group, and 50Res+SP group (the final concentrations of Res were 12.5, 25, and 50 μmol/L, respectively). Cell Counting Kit-8 was used to measure cell activity and determine the optimal concentration and action time of SP and Res. In the formal experiment, the cells were divided into control group, Res group, SP group, and Res+SP group. Real-time PCR and ELISA were used to measure the mRNA and protein expression of SPLUNC1.
RESULTSOver the time of SP infection, cell activity tended to decrease. Compared with the control group and the MOI20 SP group, the MOI50 SP group had a reduction in cell activity. Compared with the MOI20 SP group, the 25Res+SP group had increased cell activity and the 50Res+SP group had reduced cell activity (P<0.05). MOI20 SP bacterial suspension and 25 μmol/L Res were used for the formal experiment. Over the time of SP infection, the mRNA expression of SPLUNC1 in BEAS-2B cells firstly increased and then decreased in the SP group and the Res+SP group (P<0.05). Compared with the SP group, the Res+SP group had significant increases in the mRNA and protein expression of SPLUNC1 at all time points (P<0.05). Compared with the control group, the Res group had no significant changes in the mRNA and protein expression of SPLUNC1 (P>0.05).
CONCLUSIONSSP infection can induce SPLUNC1 expression and the host-defense role of SPLUNC1. Res can upregulate SPLUNC1 expression during the development of infection and enhance cell protection in a concentration- and time-dependent manner.
Bronchi ; metabolism ; Cells, Cultured ; Cytoprotection ; Epithelial Cells ; metabolism ; Glycoproteins ; analysis ; genetics ; physiology ; Humans ; Phosphoproteins ; analysis ; genetics ; physiology ; RNA, Messenger ; analysis ; Stilbenes ; pharmacology ; Streptococcus pneumoniae ; pathogenicity
8.Protective effect of succinic acid on cerebellar Purkinje cells of neonatal rats with convulsion.
Jing ZHANG ; Jing CHEN ; Xiao-Li TAN ; Ying-Ge REN ; Yong-Ping DU ; Yue-Ping ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(1):85-93
OBJECTIVETo investigate the protective effect of succinic acid (SA) on the cerebellar Purkinje cells (PCs) of neonatal rats with convulsion.
METHODSA total of 120 healthy neonatal Sprague-Dawley rats aged 7 days were randomly divided into a neonatal period group and a developmental period group. Each of the two groups were further divided into 6 sub-groups: normal control, convulsion model, low-dose phenobarbital (PB) (30 mg/kg), high-dose PB (120 mg/kg), low-dose SA (30 mg/kg), and high-dose SA (120 mg/kg). Intraperitoneal injection of pentylenetetrazole was performed to establish the convulsion model. The normal control group was treated with normal saline instead. The rats in the neonatal group were sacrificed at 30 minutes after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Those in the developmental group were sacrificed 30 days after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Whole cell patch clamp technique was used to record the action potential (AP) of PCs in the cerebellar slices of neonatal rats; the parallel fibers (PF) were stimulated at a low frequency to induce excitatory postsynaptic current (EPSC). The effect of SA on long-term depression (LTD) of PCs was observed.
RESULTSCompared with the normal control groups, the neonatal and developmental rats with convulsion had a significantly higher AP frequency of PCs (P<0.05), and the developmental rats with convulsion had a significantly decreased threshold stimulus (P<0.01) and a significantly greater inhibition of the amplitude of EPSC in PCs (P<0.05). Compared with the normal control groups, the neonatal and developmental rats with convulsion in the high-dose PB groups had a significantly decreased threshold stimulus (P<0.01), a significantly higher AP frequency of PCs (P<0.05), and a significantly greater inhibition of EPSC in PCs (P<0.05). Compared with the neonatal and developmental rats in the convulsion model groups, those in the high-dose SA groups had a significantly decreased AP frequency of PCs (P<0.05). The developmental rats in the low- and high-dose SA groups had a significantly higher AP threshold than those in the convulsion model group (P<0.05).
CONCLUSIONSThe high excitability of PCs and the abnormal PF-PC synaptic plasticity caused by convulsion in neonatal rats may last to the developmental period, which can be aggravated by PB, while SA can reduce the excitability of PCs in neonatal rats with convulsion and repair the short- and long-term abnormalities of LTD of PCs caused by convulsion.
Action Potentials ; drug effects ; Animals ; Animals, Newborn ; Cytoprotection ; Excitatory Postsynaptic Potentials ; drug effects ; Purkinje Cells ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley ; Seizures ; drug therapy ; physiopathology ; Succinic Acid ; pharmacology
9.Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells.
Pattage Madushan Dilhara Jayatissa FERNANDO ; Mei Jing PIAO ; Kyoung Ah KANG ; Yea Seong RYU ; Susara Ruwan Kumara Madduma HEWAGE ; Sung Wook CHAE ; Jin Won HYUN
Biomolecules & Therapeutics 2016;24(1):75-84
This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases.
Antioxidants*
;
Catalase
;
Cytoprotection
;
DNA
;
Heme Oxygenase-1
;
Humans*
;
Keratinocytes
;
Oxidative Stress*
;
Reactive Oxygen Species
;
Skin Diseases
;
Superoxide Dismutase
;
Transcription Factors
10.NAD(P)H-quinone oxidoreductase-1 silencing modulates cytoprotection related protein expression in cisplatin cytotoxicity.
Se Ra PARK ; Ju Young JUNG ; Young Jung KIM ; Da Young JUNG ; Mee Young LEE ; Si Yun RYU
Korean Journal of Veterinary Research 2016;56(1):15-21
NAD(P)H-quinone oxidoreductase-1 (NQO1) is a down-stream target gene of nuclear factor erythroid 2-related factor 2 (Nrf2), and performs diverse biological functions. Recently, NQO1 is recognized as an effective gene for the cytotoxic inserts with its diverse biological functions, which is focused on antioxidant properties. The aim of present study was to assess the impact of NQO1 knockdown on cytoprotection-related protein expression in cisplatin cytotoxicity by using small interfering (si) RNA targeted on NQO1 gene. Cytotoxicity of cisplatin on ACHN cells was assessed in a dose- and time-dependent manner after siScramble or siNQO1 treatment. After cisplatin treatment, cells were subjected to cell viability assay, western-blot analysis, and immunofluorescence study. The cell viability was decreased in the siNQO1 cells (50%) than the siScramble cells (70%) after 24 h of cisplatin (20 µM) treatment. Moreover, cytoprotection-related protein expressions were markedly suppressed in the siNQO1 cells after cisplatin treatment. The expression of Nrf2 and Klotho were decreased by 20% and 40%, respectively, of that in siScramble cells. Nrf2 and Klotho activation were also decreased in cisplatin treated siNQO1 cells, confirmed by cytoplasm-to-nuclear translocation. Our findings demonstrate that the increased cisplatin-induced cytotoxicity was accompanied by suppressed Nrf2 activation and Klotho expression in siNQO1 cells.
Cell Survival
;
Cisplatin*
;
Cytoprotection*
;
Fluorescent Antibody Technique
;
RNA

Result Analysis
Print
Save
E-mail