1.Methods for enhancing image quality of soft tissue regions in synthetic CT based on cone-beam CT.
Ziwei FU ; Yechen ZHU ; Zijian ZHANG ; Xin GAO
Journal of Biomedical Engineering 2025;42(1):113-122
Synthetic CT (sCT) generated from CBCT has proven effective in artifact reduction and CT number correction, facilitating precise radiation dose calculation. However, the quality of different regions in sCT images is severely imbalanced, with soft tissue region exhibiting notably inferior quality compared to others. To address this imbalance, we proposed a Multi-Task Attention Network (MuTA-Net) based on VGG-16, specifically focusing the enhancement of image quality in soft tissue region of sCT. First, we introduced a multi-task learning strategy that divides the sCT generation task into three sub-tasks: global image generation, soft tissue region generation and bone region segmentation. This approach ensured the quality of overall sCT image while enhancing the network's focus on feature extraction and generation for soft tissues region. The result of bone region segmentation task guided the fusion of sub-tasks results. Then, we designed an attention module to further optimize feature extraction capabilities of the network. Finally, by employing a results fusion module, the results of three sub-tasks were integrated, generating a high-quality sCT image. Experimental results on head and neck CBCT demonstrated that the sCT images generated by the proposed MuTA-Net exhibited a 12.52% reduction in mean absolute error in soft tissue region, compared to the best performance among the three comparative methods, including ResNet, U-Net, and U-Net++. It can be seen that MuTA-Net is suitable for high-quality sCT image generation and has potential application value in the field of CBCT guided adaptive radiation therapy.
Cone-Beam Computed Tomography/methods*
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Artifacts
;
Algorithms
;
Bone and Bones/diagnostic imaging*
;
Neural Networks, Computer
2.Advances in low-dose cone-beam computed tomography image reconstruction methods based on deep learning.
Jiangyuan SHI ; Ying SONG ; Guangjun LI ; Sen BAI
Journal of Biomedical Engineering 2025;42(3):635-642
Cone-beam computed tomography (CBCT) is widely used in dentistry, surgery, radiotherapy and other medical fields. However, repeated CBCT scans expose patients to additional radiation doses, increasing the risk of secondary malignant tumors. Low-dose CBCT image reconstruction technology, which employs advanced algorithms to reduce radiation dose while enhancing image quality, has emerged as a focal point of recent research. This review systematically examined deep learning-based methods for low-dose CBCT reconstruction. It compared different network architectures in terms of noise reduction, artifact removal, detail preservation, and computational efficiency, covering three approaches: image-domain, projection-domain, and dual-domain techniques. The review also explored how emerging technologies like multimodal fusion and self-supervised learning could enhance these methods. By summarizing the strengths and weaknesses of current approaches, this work provides insights to optimize low-dose CBCT algorithms and support their clinical adoption.
Cone-Beam Computed Tomography/methods*
;
Deep Learning
;
Humans
;
Algorithms
;
Image Processing, Computer-Assisted/methods*
;
Radiation Dosage
;
Artifacts
3.A segmented backprojection tensor degradation feature encoding model for motion artifacts correction in dental cone beam computed tomography.
Zhixiong ZENG ; Yongbo WANG ; Zongyue LIN ; Zhaoying BIAN ; Jianhua MA
Journal of Southern Medical University 2025;45(2):422-436
OBJECTIVES:
We propose a segmented backprojection tensor degradation feature encoding (SBP-MAC) model for motion artifact correction in dental cone beam computed tomography (CBCT) to improve the quality of the reconstructed images.
METHODS:
The proposed motion artifact correction model consists of a generator and a degradation encoder. The segmented limited-angle reconstructed sub-images are stacked into the tensors and used as the model input. A degradation encoder is used to extract spatially varying motion information in the tensor, and the generator's skip connection features are adaptively modulated to guide the model for correcting artifacts caused by different motion waveforms. The artifact consistency loss function was designed to simplify the learning task of the generator.
RESULTS:
The proposed model could effectively remove motion artifacts and improve the quality of the reconstructed images. For simulated data, the proposed model increased the peak signal-to-noise ratio by 8.28%, increased the structural similarity index measurement by 2.29%, and decreased the root mean square error by 23.84%. For real clinical data, the proposed model achieved the highest expert score of 4.4221 (against a 5-point scale), which was significantly higher than those of all the other comparison methods.
CONCLUSIONS
The SBP-MAC model can effectively extract spatially varying motion information in the tensors and achieve adaptive artifact correction from the tensor domain to the image domain to improve the quality of reconstructed dental CBCT images.
Cone-Beam Computed Tomography/methods*
;
Artifacts
;
Humans
;
Motion
;
Image Processing, Computer-Assisted/methods*
;
Signal-To-Noise Ratio
;
Algorithms
4.AQMFB-DWT: A Preprocessing Technique for Removing Blink Artifacts Before Extracting Pain-evoked Potential EEG.
Wenjia GAO ; Dan LIU ; Qisong WANG ; Yongping ZHAO ; Jinwei SUN
Neuroscience Bulletin 2025;41(12):2285-2295
The pain-evoked potential electroencephalogram (EEG) is an effective electrophysiological indicator for pain assessment, yet its extraction is challenging due to interference from background activity and involuntary blinks. Although existing blink artifact-removal methods show efficacy, they face limitations such as the need for reference signals, neglect of individual differences, and reliance on user input, hindering their practical application in clinical pain assessments. In this paper, we propose a novel framework applying adaptive quadrature mirror filter banks (AQMFB) with discrete wavelet transform (DWT) to remove blink artifacts in pain EEG. Unlike traditional DWT methods that apply fixed wavelets across subjects, our method adapts wavelet construction based on the characteristics of EEG. Experimental results demonstrate that AQMFB-DWT outperforms four leading methods in removing blink artifacts with minimal distortion of pain information, all within an acceptable processing time. This technique is a valuable preprocessing step for enhancing the extraction of pain-evoked potentials.
Humans
;
Artifacts
;
Blinking/physiology*
;
Electroencephalography/methods*
;
Pain/diagnosis*
;
Male
;
Wavelet Analysis
;
Adult
;
Female
;
Evoked Potentials/physiology*
;
Young Adult
;
Brain/physiopathology*
;
Pain Measurement/methods*
;
Signal Processing, Computer-Assisted
5.Anti-motion Artifact Performance Test System for Ambulatory ECG Monitoring Equipment.
Liping QIN ; Yi WU ; Ke XU ; Xiangrui ZHAO
Chinese Journal of Medical Instrumentation 2023;47(6):624-629
Anti-motion artifact is one of the most important properties of ambulatory ECG monitoring equipment. At present, there is a lack of standardized means to test the performance of anti-motion artifact. ECG simulator and special conductive leather are used to build the simulator, it is used to simulate human skin, to generate ECG signal input for the ECG monitoring equipment attached to it. The mechanical arm and fixed support are used to build a motion simulation system to fix the conductive leather. The mechanical arm is programmed to simulate various motion states of the human body, so that the ECG monitoring equipment can produce corresponding motion artifacts. The collected ECG signals are read wirelessly, observed, analyzed and compared, and the anti-motion artifact performance of ECG monitoring equipment is evaluated. The test results show that by artificially creating the small difference between the two groups of ambulatory ECG monitoring equipment, the system can accurately test the interference signals introduced under the conditions of controlled movement such as tension and torsion, and compare the advantages and disadvantages. The research shows that the test system can provide convenient and accurate verification means for the research of optimizing anti-motion interference.
Humans
;
Artifacts
;
Signal Processing, Computer-Assisted
;
Electrocardiography, Ambulatory/methods*
;
Electrocardiography
;
Motion
6.Sinogram interpolation combined with unsupervised image-to-image translation network for CT metal artifact correction.
Jiahong YU ; Kunpeng ZHANG ; Shuang JIN ; Zhe SU ; Xiaotong XU ; Hua ZHANG
Journal of Southern Medical University 2023;43(7):1214-1223
OBJECTIVE:
To propose a framework that combines sinogram interpolation with unsupervised image-to-image translation (UNIT) network to correct metal artifacts in CT images.
METHODS:
The initially corrected CT image and the prior image without artifacts, which were considered as different elements in two different domains, were input into the image transformation network to obtain the corrected image. Verification experiments were carried out to assess the effectiveness of the proposed method using the simulation data, and PSNR and SSIM were calculated for quantitative evaluation of the performance of the method.
RESULTS:
The experiment using the simulation data showed that the proposed method achieved better results for improving image quality as compared with other methods, and the corrected images preserved more details and structures. Compared with ADN algorithm, the proposed algorithm improved the PSNR and SSIM by 2.4449 and 0.0023 when the metal was small, by 5.9942 and 8.8388 for images with large metals, and by 8.8388 and 0.0130 when both small and large metals were present, respectively.
CONCLUSION
The proposed method for metal artifact correction can effectively remove metal artifacts, improve image quality, and preserve more details and structures on CT images.
Artifacts
;
Algorithms
;
Computer Simulation
;
Tomography, X-Ray Computed
7.An adaptive CT metal artifact reduction algorithm that combines projection interpolation and physical correction.
Qi Sen ZHU ; Yong Bo WANG ; Man Man ZHU ; Xi TAO ; Zhao Ying BIAN ; Jian Hua MA
Journal of Southern Medical University 2022;42(6):832-839
OBJECTIVE:
To propose an adaptive weighted CT metal artifact reduce algorithm that combines projection interpolation and physical correction.
METHODS:
A normalized metal projection interpolation algorithm was used to obtain the initial corrected projection data. A metal physical correction model was then introduced to obtain the physically corrected projection data. To verify the effectiveness of the method, we conducted experiments using simulation data and clinical data. For the simulation data, the quantitative indicators PSNR and SSIM were used for evaluation, while for the clinical data, the resultant images were evaluated by imaging experts to compare the artifact-reducing performance of different methods.
RESULTS:
For the simulation data, the proposed method improved the PSNR value by at least 0.2 dB and resulted in the highest SSIM value among the methods for comparison. The experiment with the clinical data showed that the imaging experts gave the highest scores of 3.616±0.338 (in a 5-point scale) to the images processed using the proposed method, which had significant better artifact-reducing performance than the other methods (P < 0.001).
CONCLUSION
The metal artifact reduction algorithm proposed herein can effectively reduce metal artifacts while preserving the tissue structure information and reducing the generation of new artifacts.
Algorithms
;
Artifacts
;
Image Processing, Computer-Assisted/methods*
;
Metals
;
Phantoms, Imaging
;
Tomography, X-Ray Computed/methods*
8.Low-dose helical CT projection data restoration using noise estimation.
Fa Wei HE ; Yong Bo WANG ; Xi TAO ; Man Man ZHU ; Zi Xuan HONG ; Zhao Ying BIAN ; Jian Hua MA
Journal of Southern Medical University 2022;42(6):849-859
OBJECTIVE:
To build a helical CT projection data restoration model at random low-dose levels.
METHODS:
We used a noise estimation module to achieve noise estimation and obtained a low-dose projection noise variance map, which was used to guide projection data recovery by the projection data restoration module. A filtering back-projection algorithm (FBP) was finally used to reconstruct the images. The 3D wavelet group residual dense network (3DWGRDN) was adopted to build the network architecture of the noise estimation and projection data restoration module using asymmetric loss and total variational regularization. For validation of the model, 1/10 and 1/15 of normal dose helical CT images were restored using the proposed model and 3 other restoration models (IRLNet, REDCNN and MWResNet), and the results were visually and quantitatively compared.
RESULTS:
Quantitative comparisons of the restored images showed that the proposed helical CT projection data restoration model increased the structural similarity index by 5.79% to 17.46% compared with the other restoration algorithms (P < 0.05). The image quality scores of the proposed method rated by clinical radiologists ranged from 7.19% to 17.38%, significantly higher than the other restoration algorithms (P < 0.05).
CONCLUSION
The proposed method can effectively suppress noises and reduce artifacts in the projection data at different low-dose levels while preserving the integrity of the edges and fine details of the reconstructed CT images.
Algorithms
;
Artifacts
;
Tomography, Spiral Computed
;
Tomography, X-Ray Computed/methods*
9.Automatic removal algorithm of electrooculographic artifacts in non-invasive brain-computer interface based on independent component analysis.
Hao SONG ; Song XU ; Guoming LIU ; Jing LIU ; Peng XIONG
Journal of Biomedical Engineering 2022;39(6):1074-1081
The non-invasive brain-computer interface (BCI) has gradually become a hot spot of current research, and it has been applied in many fields such as mental disorder detection and physiological monitoring. However, the electroencephalography (EEG) signals required by the non-invasive BCI can be easily contaminated by electrooculographic (EOG) artifacts, which seriously affects the analysis of EEG signals. Therefore, this paper proposed an improved independent component analysis method combined with a frequency filter, which automatically recognizes artifact components based on the correlation coefficient and kurtosis dual threshold. In this method, the frequency difference between EOG and EEG was used to remove the EOG information in the artifact component through frequency filter, so as to retain more EEG information. The experimental results on the public datasets and our laboratory data showed that the method in this paper could effectively improve the effect of EOG artifact removal and improve the loss of EEG information, which is helpful for the promotion of non-invasive BCI.
Humans
;
Electrooculography/methods*
;
Artifacts
;
Brain-Computer Interfaces
;
Algorithms
;
Electroencephalography/methods*
;
Signal Processing, Computer-Assisted
10.Research on automatic removal of ocular artifacts from single channel electroencephalogram signals based on wavelet transform and ensemble empirical mode decomposition.
Rui ZHANG ; Jiajun LIU ; Mingming CHEN ; Lipeng ZHANG ; Yuxia HU
Journal of Biomedical Engineering 2021;38(3):473-482
The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the 'clean' EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.
Algorithms
;
Artifacts
;
Computer Simulation
;
Electroencephalography
;
Signal Processing, Computer-Assisted
;
Wavelet Analysis

Result Analysis
Print
Save
E-mail