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_______________________________________________________________________________________________ 
 

ABSTRACT 
 

Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen 
represented three major wood-rot molds; brown rot (Gloeophyllum trabeum), white rot (Phanerochaete chrysosporium) 
and soft rot (Trichoderma reesei). After solid state fermentation of the fungi on the filter paper for four days, the 
saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal 
species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose) of a commercial 
cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic 
acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei 
with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter 
paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. 
Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 
and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter 
paper after day 5.  Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by 
using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation 
process for the production of fuel ethanol.   
 
Keywords: Phanerochaete chrysosporium, Trichoderma reesei, Gloeophyllum trabeum, Saccharomyces cerevisiae, simultaneous 
saccharification and fermentation (SSF), cellulase 

_______________________________________________________________________________________________ 
 
INTRODUCTION 

 

Lignocellulosic materials from biomass such as 
agricultural crop residues and other energy crops is the 
most abundant and renewable biopolymer on Earth 
(Zhang 2008; Fukuda et al., 2009). Made of 75–80% 
cellulose and hemicellulose, they are low cost feedstocks 
for various industrial purposes that can be used in the 
production of chemicals and fuel ethanol, which is a good 
substitute for gasoline in internal combustion engines 
(Adsul et al., 2005; Ahamed and Vermette, 2008; Ling et 
al., 2009). However, the production of fuel grade ethanol 
from lignocellulosic materials as an alternative or additives 
for fossil fuels is still expensive. According to Alkasrawi et 
al. (2003), recent economical calculations showed that the 
production cost of fuel ethanol from lignocellulosic 
biomass would be higher than the price of gasoline. Thus, 
additional cost reductions are necessary to achieve 
economic competitiveness against the existing 
conventional fuels. 

Currently, the most promising platform for the 
bioconversion of lignocellulosics to ethanol is based on 
the enzymatic hydrolysis of biomass using cellulase and 
hemicellulase enzymes via simultaneous saccharification 
and fermentation (SSF) process, first reported in 1976 by 
Gauss and colleagues (Ahamed and Vermette, 2008; 
Olofsson et al., 2008). SSF is a technology that has 
gained a lot of interest, as it is both logistically and 
economically favorable in terms of higher final ethanol 
yield (Ohgren et al., 2007; Tomás-Pejó et al., 2009).  
Furthermore, this type of process has lower energy 
consumption when compared to the closely related 
separate hydrolysis and fermentation (SHF) (Olofsson et 
al., 2008).  However, the drawback of SSF is the high 
enzyme concentrations that are required for significant 
hydrolysis of cellulose and hemicellulose (Alkasrawi et al., 
2003; Linde et al., 2007).  According to Ahamed and 

Vermette (2008), cellulase production is the most 
expensive step during ethanol production from cellulosic 
biomass, accounting for approximately 40% of the total 
cost. Therefore, because the high cost of cellulase 
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enzyme production and enzyme loading is a major 
economical factor in the overall ethanol production cost, it 
is imperative to find methods of reducing the enzyme 
loading and increasing the hydrolysis of cellulose to 
fermentable sugars (Gregg et al., 1998; Adsul et al., 2005).  

Another challenge in making the bioconversion of 
lignocellulosics to ethanol more feasible is the 
pretreatments that are needed to be performed on the 
feedstocks prior to enzymatic hydrolysis (Silverstein et al., 
2007; Zhu et al., 2008). The problems with many current 
pretreatments technologies are the generations of toxic 
by-products that can hinder the bio-mechanisms of the 
cellulolytic and hemicellulolytic enzymes, and may also 
inhibit downstream alcoholic fermentation (Ortega et al., 
2001; Keating et al., 2006). Furthermore, these practices 

are environmentally detrimental and energy intensive 
(Chundawat et al., 2007). Therefore, it is imperative to 
develop means of direct enzymatic hydrolysis of 
lignocellulosics that do not sacrifice ethanol production. 
One possible solution is to use lignolytic, cellulolytic and 
hemicellulolytic organisms, such as fungi, to perform 
enzymatic saccharifications that will liberate fermentable 
sugars from the biomass.   

Many fungal groups have been known to be able to 
degrade the main components of lignocellulosics, such as 
cellulose, hemicellulose and lignin (Arantes and Milagres, 
2006; Sanchez, 2009; Shrestha et al., 2009; Rasmussen 
et al., 2010). The first of this group, the filamentous molds 
are well documented for their highly efficient cellulolytic 
and hemicellulolytic enzyme systems for the complete 
hydrolysis of biomass into its monomeric sugar 
components. The extracellular cellulolytic system of this 
fungus group composed of 60–80% cellobiohydrolases or 
exoglucanases, 20–36% of endoglucanases and 1% of β-
glucosidases that act synergistically (Ahamed and 
Vermette, 2008).  

The next fungal group, the white-rots, have been 
studied extensively for their abilities to efficiently degrade 
and depolymerize major plant cell wall components, 
especially the more recalcitrant lignin, making it 
extensively used in the study of lignin biodegradation and 
other biotechnological applications, such as biobleaching 
and pulp mill effluents treatment (Wymelenberg et al., 
2005; Kersten and Cullen, 2007; Ravalason et al., 2008). 

White rots effectively perform all these processes because 
they secrete several varieties of lignin degrading proteins, 
such as lignin peroxidases (LiPs), manganese 
peroxidases (MnPs) and other low redox-potential 
peroxidases, in addition to expressing multiple cellulases 
and hemicellulase (Suzuki et al., 2008).  

The third fungal group consists of the brown-rots. 
These saprophytic fungi are major forest biomass 
degraders that contribute significantly to the soil fertility in 
the ecosystem (Kerem et al., 1999; Cohen et al., 2005). 
Brown-rot fungi also cause the most destructive type of 
decay in wooden structures, although their biodegradation 
mechanisms are still relatively unknown (Kerem et al., 
1999; Schilling et al., 2009). Fungi from this group appear 
to produce some cellulases, but a larger part of the 
cellulose degradation seems to be non-enzymatic, 

involving low molecular weight catalysts such as chelating 
peptides and radicals (Henriksson et al., 1999; Cohen et 
al., 2005).  

In this study, we evaluated three fungal species that 
represent the three major wood-rot; brown-rot 
(Gloeophyllum trabeum), white-rot (Phanerochaete 
chrysosporium) and soft-rot (Trichoderma reesei), for their 
abilities to enzymatically saccharify filter paper via in situ. 
The efficiencies of their enzyme activities are measure via 
the release of cellobiose, glucose and the end 
fermentation products in the form of ethanol and organic 
acids. To perform fermentation, Saccharomyces cerevisea 
was used to maximize the conversion of the 
saccharification products. 
 
MATERIALS AND METHODS 
 
Microorganisms stocks and culture preparation 
 

All fungal cultures used in this study were obtained from 
American Type Culture Collection (Rockville, MD). The 
Gloeophyllum trabeum (ATCC 11539), Phanerochaete 
chrysosporium (ATCC 24725), Trichoderma reesei (ATCC 
13631) and Saccharomyces cerevisiae (ATCC 24859) 
cultures were revived onto potato dextrose broth (PDB) 
(Difco, Becton Dickinson and Co., Sparks, MD) at 24 °C 
with shaking at 120 rpm overnight (Shrestha et al., 2009).  

For long term storages, the stock cultures were aliquoted 
in Yeast Malt (YM) extract broth (glucose, 10.0 g/L; 
peptone, 5.0 g/L; yeast extract, 3.0 g/L; and malt extract, 
3.0 g/L) (Difco) supplemented with 20% (v/v) glycerol, at -
80 °C in an ultralow-temperature freezer (So-Low 
Environmental Equipment Co., Inc., Cincinnati, OH) 
(Shrestha et al., 2008; Shrestha et al., 2009). 

Seed cultures from spore suspension of G. trabeum, 
P. chrysosporium and T. reesei were prepared in 1 L YM 

broth and incubated at 30 °C, agitated at 150 rpm. After a 
7-day of incubation period, the mycelial pellets were 
separated from the broth via centrifugation (Sorvall-RC3B 
Plus centrifuge, Thermo Fisher Scientific, Wilmington, DE) 
at 7,277g for 20 min in a sterilized 1 L polypropylene 
centrifuge bottle (Nalgene, Nalge Nunc, Rochester, NY) 
(Shrestha et al., 2008). Next, the mycelial pellets were 
rinsed with a solution containing 50 mM Phosphate buffer 
(pH 4.5-4.8), 0.5% (NH4)2SO4 and basal salt solution (0.25 
g KH2PO4, 0.063 g MgSO4·7H2O, 0.013 g CaCl2·2H2O, in 
1 L water) and 1.25 mL of premix trace element solution 
(3.0 g MgSO4·7H2O, 0.5 g MnSO4·H2O, 1.0 g NaCl, 0.1 g 
FeSO4·7H2O, 0.181 g CoSO4·7H2O, 0.082 g CaCl2·2H2O, 
0.1 g ZnSO4, 0.01 g CuSO4·5H2O, 0.01 g Al2(SO4)3·2H2O, 
0.01 g H3BO3, and 0.01 g NaMoO4) in 1 L of deionized 
water (Shrestha et al., 2009). The mycelial pellets were 

once more separated from the broth via centrifugation at 
7,277g for 20 min in a sterilized 1 L polypropylene 
centrifuge bottle. The final mycellial mat collected was 
mixed with an equal volume of the same solution mixture.  

S. cerevisiae culture inoculum for the fermentation 
stage was prepared by growing the stock culture in sterile 
50 mL YM broth, in 250-mL Erlenmeyer flasks at 32 °C 
(120 rpm). After harvesting the yeast cells in 50 mL 
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conical centrifuge tubes (BD Falcon, BD, Franklin Lakes, 
NJ) at 2,852 g for 10 min (Beckman J2-21centrifuge, 
Beckman Coulter Inc., Brea, CA), the cell concentration 
was adjusted with sterile YM broth to 10

7
-10

8
 CFU/mL as 

determined turbidometrically at 600 nm (Nguyen et al., 
2009). 

 
Filter paper compositional analysis 

 
The compositional analysis of the filter paper used in this 
study was performed in triplicate via complete enzymatic 
analysis as described by Selig et al. (2008), with minor 
modifications. Filter paper strips (0.1 g) were soaked in 
50.0 mL 0.1 M citrate buffer (pH 4.8) and 1.38 mL (60 
FPU/mL) of Spezyme CP (Genencor, Rochester, NY) in a 
250 mL flask. Distilled water and 1.0 mL of a 2% sodium 
azide solution, as microbial inhibitor, was added to bring 
the total volume in each flask to 100.0 mL. The flask was 
incubated in an incubator shaker at 50 °C for 5 days for 
complete hydrolysis of the filter paper.   
 
Solid state fermentation for enzyme induction 

 
Prior to the addition of fungal inoculum for enzyme 
induction, 2.0 g of shredded filter paper with 5 mL buffered 
basal salt solution was sterilized at 121 °C for 1 h in 
loosely mouth covered polypropylene bottles. Then, 2 mL 
of harvested fungal mycelia in 100 mM phosphate buffer 
(pH 4.5-4.8), 0.5% (NH4)2SO4 and basal salt solution was 
added and mixed well using glass marbles. Solid state 
fermentation was then performed for 4 days at 37 °C, in a 
humidified incubator, for the production of cellulases and 
hemicellulases. 
 
Determination of total protein concentration and 
enzyme activities 

 
Sample aliquots of 1.5 mL were taken from the medium 
washed fungal grown filter paper (Whatman No. 1, 
Whatman Inc., Clifton, NJ) at day 4 of solid substrate 
fermentation for each of the three fungal species treated 
filter paper. The supernatant was centrifuged at 1,118 g 
for 5 min (MiniSpin Plus, Eppendorf, Hauppauge, NY) and 
filtered through a 0.2 μm nylon syringe filter (VWR 
International, Batavia, IL), and was used to perform total 
protein analysis and enzyme activities assay.  

Protein production by P. chrysosporium and G. 
trabeum grown on the filter paper was measured via the 

NanoDrop™ 1000 Spectrophotometer (Thermo Fisher 
Scientific, Wilmington, DE). This system measures a 
loading of 2 uL sample size and calculates the protein 
concentration (mg/mL) from the protein’s absorbance at 
280 nm (A280). A separate fermentation broth from the 
filter paper control bottle with no fungal culture was used 
as the blank reading. 

The commercial cellulase enzyme (Spezyme CP) 
was kindly provided by Genencor International (Palo Alto, 
CA). The cellulase activity was measured using the filter 
paper activity (FPase) assay, expressed in filter paper 
units (FPU/mL) according to the standard procedure of the 

National Renewable Energy Laboratory (NREL) (Adney 
and Baker, 2008). This procedure measures the release 
of reducing sugar produced in 60 min from a mixture of 
enzyme solution (0.5 mL) and of citrate buffer (0.05 M, pH 
4.8, 1 mL) in the presence of 50 mg Whatman No. 1  filter 
paper (1 x 6 cm strip) and incubated at 50 °C. The 
released sugars were analyzed by the dinitrosalicylic 
(DNS) acid reducing sugar assay. One unit of enzyme 
activity was defined as the amount of enzyme releasing 
2.0 mg reducing sugar from 50 mg of filter paper in 60 min 
has been designated as the intercept for calculating filter 
paper cellulase units (FPU) by the International Union of 
Pure and Applied Chemistry (IUPAC) (Ghose, 1987). All 
samples were analyzed in triplicate and mean values were 
calculated.  
 
Simultaneous saccharification and fermentation (SSF) 

 
SSF reactions were carried out in 250 mL polypropylene 
bottles with batch cultures of 100 mL final volume, 
consisting of 25 mL 4X Yeast Extract Broth (1.8 g yeast 
extract, 0.07 g CaCl2·2H2O, 0.45 g of KH2PO4, 1.2 g 
(NH4)2SO4 and 0.3 g MgSO4·7H2O per liter of deionized 
water) (Shrestha et al., 2009) buffered basal medium (pH 
4.5-4.8) (50 mM Phosphate Buffer + Basal Salt Solution) 
(Shrestha et al., 2009).  For the sample set that was 
treated with the commercial cellulase enzyme, 25 FPU of 
Spezyme CP/g cellulose was added. The flasks were then 
aseptically inoculated with S. cerevisiae suspension. 
Batch culture SSF was performed under static condition 
for 5 days at 37 °C. All experiments were performed in 
triplicates. 
 
Total sugars assays 

 
Sample aliquots of 1.8 mL were collected aseptically from 
each bottle every 24 h. The sample mixtures were 
centrifuged and filtered through a 0.2 μm nylon syringe 
filter. The filtered supernatants were tested for total sugars 
via the phenol-sulfuric (Crawford and Pometto, 1988) 
method.  The total sugar determination was determined 
via the phenol sulfuric carbohydrate test at 490 nm 
(SpectraMax Plus384, Molecular Devices, Inc., 
Sunnyvale, CA, USA) with glucose standards. The 
equivalent sugar concentration (g/L) was determined 
based on a standard glucose solution curve that was 
generated prior to the assays.  
 
High Pressure Liquid Chromatography (HPLC) 
analyses  

 
Filtered sample aliquots were tested for cellulose, glucose 
and fermentation products (ethanol, acetic acid, lactic 
acid) were analyzed by using a Waters High Pressure 
Liquid Chromatography (Millipore Corp., Milford, MA) 
equipped with a Waters Model 401 refractive index (RI) 
detector, column heater, autosampler and computer 
controller.  The separation and analysis of ethanol and 
other fermentation constituents was done on a Bio-Rad 
Aminex HPX-87H column (300.0 x 7.8 mm) (Bio-Rad 
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Chemical Division, Richmond, CA) using 0.012 N H2SO4 
as a mobile phase with a flow rate of 0.6 mL/min, a 20 µL 
injection volume and a column temperature of 65.0 °C 
(Ramos, 2003; Liu et al., 2008; Shrestha et al., 2009).  
Percentages of theoretical ethanol yields (TEY) were 
calculated based on a theoretical ethanol yield of 56.8 g 
per 100 g of cellulose (Doran and Ingram, 1993).  
 

 

 
 
 
 
Statistical analyses 

 
The experimental data were analyzed statistically using 
the statistical software, JMP 8.0 (SAS Institute Inc., Cary, 
NC). The data (n=3) on ethanol production were fitted to 
non-linear  polynomial (2

nd
 degree) models. Error bars 

were determined based on the standard deviation from 
the mean values. Student’s t-test for significant 
differences were also performed for all final data set to 
determine multiple comparisons of the ethanol production 
based on the different fungal treatments. A p-value of less 
than 0.05 was considered significantly different. 
 
RESULTS AND DISCUSSION 

 
Cellulose degrading microorganisms hydrolyze cellulose 
using complicated consortia of different enzymes that 
work individually, but synergistically on the cellulose, 
converting it to cellobiose and glucose (Henrikkson et al., 
1999). This group of enzymes is produced by a wide 
variety of bacteria and fungi, aerobes and anaerobes, 
mesophiles and thermophiles (Bhat and Bhat, 1997). 
However, only few of these microorganisms produce a 
complete cellulase complex and significant levels of 
extracellular cellulase capable of efficient 
depolymerization and solubilizing lignocellulosic biomass 
(Ahamed and Vermette, 2008). 

These cellulolytic enzymes are inducible enzyme 
systems (Suto and Tomita, 2001; Ling et al., 2009). The 

induction process hypothesizes that basal levels of 
cellulase that is constitutively produced by fungi first 
hydrolyses cellulose to soluble oligosaccharides or their 
derivative sugars that is then absorbed into the cells, 
ultimately becoming the actual inducers (Lynd et al., 2002; 
Ling et al., 2009). In the case of Trichoderma, the conidial 
bound cellobiohydrolase hydrolyses the cellulose chains, 
liberating cellobiose and cellobiono-1,5-lactone (CBL) that 
are then taken up by the mycelia and promote further 
cellulase expressions (Bhat and Bhat, 1997; Suto and 
Tomita, 2001). 

We chose filter paper as the cellulosic starting 
material because of its high cellulose and low impurities 
content (www.whatman.com). From the results of the total 
enzymatic analysis done on the filter paper, the content of 
the filter paper was approximately 98.0% cellulose. 
Because of its high cellulose purity, filter paper contains 

no lignin or other inhibitory compound that may inhibit the 
fermentation of the glucose released into ethanol, or 
interfere with other analyses.  It was also used in previous 
fungal enzyme induction studies (van Wyk, 1999), largely 
due to its Crystallinity index (CrI) of 0.45, that is within the 
range of susceptible cellulosic substrates of 0.4-0.7 like 
other pretreated biomass, and its degree of polymerization 
(DP) of 750-2800 that is also very close to conventional 
pretreated cellulosic substrates of 400-1000 (Zhang et al., 
2006). In fact, it is the material chosen by NREL for 
standardized method of cellulase activities measurement 
(Decker et al., 2003; Adney and Baker, 2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
 n.d. – non detected 

 
Figure 1: Flow-chart of process outlining the steps for 
solid state fermentation of P. chrysosporium or G. 
trabeum or T. reesei on filter paper, followed by SSF using 
S. cerevisiae as the fermenting organisms. 
 

The general outline of our study is shown in Figure 1. 
While many studies have been done on P. chrysosporium, 
G. trabeum and T. reesei to produce various cellulases, 
hemicellulases and lignolytic enzymes, and their direct 
cellulose hydrolysis activities, only few have reported their 
coupled applications in SSF (van Wyk, 1999; Decker et 
al., 2003; Cohen et al., 2005; Shrestha et al., 2008; 
Shrestha et al., 2009; Rasmussen et al., 2010). Therefore, 
our study was extended to further examine the efficiencies 
of the respective fungal species and their enzymatic 
mechanisms on high cellulose feedstock, such as filter 
paper, in the presence of S. cerevisiae, as the fermenting 
organism. To achieve this, we performed SSF on the filter 
paper and measured the final fermentation products via 

X  100 
Theoretical  
ethanol yield (%) =  

Ethanol produced (g) 

Initial cellulose (g)  X  0.568  

 2.0 g Filter Paper + 5.0 mL phosphate buffer with 
ammonium sulfate (pH 4.5) 

2.0 mL P. chrysosporium or G. trabeum or T. reesei 
in phosphate buffer with ammonium sulfate (pH 4.5) 

62.5 mL phosphate buffer (pH 4.5)  
+ 25 mL 4X Yeast Extract broth + S. cerevisiae  

Total carbohydrate assays – Phenol sulfuric assay 
Cellobiose – HPLC 
Glucose – HPLC 
Ethanol – HPLC 

Acetic acid – HPLC 
Lactic acid – HPLC  

 

 

 

Autoclaved at 121 °C 
1 h 

Solid state fermentation at 
37 °C for 4 days 

Simultaneous saccharification and 
fermentation (SSF) at 37 °C 
5 days 
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HPLC. This technology combines continuous enzymatic 
hydrolysis of cellulose with the simultaneous fermentation 
of the sugars released to ethanol via a chosen fermenting 
microorganisms (i.e. the yeast S. cerevisiae), in a single 
reactor (Ballesteros et al., 2004). We also prepared a 
separate sample set that was added with the commercial 
cellulase enzyme, Spezyme CP, at a low dose of 25 
FPU/g cellulose, as a control. The combination of 
Spezyme CP and S. cerevisiae yielded 47.91 g/100 g filter 
paper of ethanol (84.35% theoretical).  
 
Table 1: Enzyme activity and total protein assays (n=3) 

 

 Protein Assay 
(mg/mL)

a
 

Enzyme Assay 
(FPU/mL)

b
 

P. chrsysosporium 10.52 ± 0.78 0.76 ± 0.01 
T. reesei 10.67 ± 0.10 1.76 ± 0.03 
G. trabeum 10.04 ± 0.19 1.52 ± 0.02 

a 
Protein was determined by NanoDrop™ 1000 

Spectrophotometer.   
b     

Filter paper unit activities (FPase) based on the value of 2.0 
mg of reducing sugar as glucose from 50 mg of filter paper, at 4% 
conversion, in 1 h (units FPU/mL) 

 
From Table 1, the results of the total protein assay 

using the NanoDrop
TM

 1000 spectrophotometer showed 
that the highest protein concentration of 10.67 mg/mL was 
produced in the sample treated with T. reesei, followed by 

10.52 mg/mL in the sample treated with P. chrysosporium 
while in the sample treated with G. trabeum, the 
concentration was at 10.04 mg/mL.  We then determined 
the enzyme activities based on the filter paper units 
(FPU), as described previously (Ghose, 1987; Adney and 
Baker, 2008). The result from FPase assays from the 
induction experiments indicated that cellulase activities 
were highest in the sample treated with T. reesei, at 1.76 
FPU/mL. The sample treated with G. trabeum had a lower 
protein activities value of 1.52 FPU/mL and the sample 
treated with P. chrysosporium had the lowest FPase 
activities of 0.76 FPU/mL. This trend is expected as T. 
reesei have been known to produce high concentration of 
potent cellulases (Jovanovic et al., 2009), and in fact, this 
fungus serves as a reference organism for cellulose 
degradation studies and for the mass production of 
cellulases and hemicellulases for various applications 
(Martinez et al., 2008).   

During the five-day SSF period, total sugar production 
was recorded. From Figure 2, residual total sugar 
remained at a very steady level for all the samples treated 
with the three different fungi. The concentration was at 
0.678 g of total sugar per 100 g of filter paper at day 0 and 
by day 5, the concentration ranged from 0.663–1.692 g of 
total sugar per 100 g of filter paper. The total sugar profile 
for the Spezyme control showed a sharp increase in day 
1, followed by a sharp decrease in day 2.  

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 2: Time course of total sugar production, as determined via the phenol-sulfuric method. The data points 
represent the averages of three independent experiments (n=3). Note: PC – P. chrysosporium, TR – T. reesei, GT – G. 
trabeum, SC – S. cerevisea. Time zero is after 4 days of solid state fermentation with a specific fungus (P. 
chrysosporium, G. trabeum or T. reesei). 

 
 
 

Anaerobic conditions (days) 

 Filter Paper + Yeast 

Filter Paper + Spezyme (25 FPU) + SC 

Filter Paper + PC + SC 
Filter Paper + GT + SC 
Filter Paper + TR + SC 
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Figure 3: Time course of ethanol production. The data points represent the averages of three independent experiments 

(n=3). Note: PC – P. chrysosporium, TR – T. reesei, GT – G. trabeum, SC – S. cerevisea. Left y-axis represents the bar 
charts, Right y-axis represents the line regression. Time zero is after 4 days of solid state fermentation with a specific 
fungus (P. chrysosporium, G. trabeum  or T. reesei). 
 

From Figure 3, ethanol production was highest for the 
filter paper inoculated with T. reesei. Ethanol production 
was in steady increments even during the final day of 
experiment at day 5, with the concentration values of 5.13 
g/100 g filter paper, corresponding to 9.03% TEY (Table 
2). The filter paper inoculated with P. chrysosporium was 
at 1.79 g/ 100 g filter paper (3.15 % TEY). In comparing 
the results of the ethanol production at day 5, the FPU 
values between T. reesei and P. chrysosporium treated 
filter paper reflects the final ethanol concentration. Higher 
enzymatic activities in T. reesei resulted in more ethanol 
production, and in fact the difference of approximately 
286%. Another explanation to the lower ethanol yield in 
the sample treated with P. chrysosporium is the possibility 
incomplete hydrolysis of the cellulose to glucose.  Statistic 
analyses validated the significance of these results 
(Figure 4).   
 
Table 2: Cellulose conversion and theoretical ethanol 

yield at day 5 (n=3) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Maximum ethanol yields of different fungal 

treatments conditions. Letters on top of the columns 
indicate significant differences (Student’s t test, α=0.05). 

 Cellulose 
Conversion  
(g / 100 g filter 
paper) 

Theoretical 
ethanol yield 
(%) 

P. chrysosporium 1.79 3.15 
T. reesei 5.13 9.03 
G. trabeum n.d.

a
 n.d.

a
 

Spezyme (25 
FPU/g cellulose) 

47.91 84.35 

1 

Filter Paper + Spezyme + 
SC 

Filter Paper + PC + SC 

Filter Paper + Yeast 

Filter Paper + TR + SC 

Filter Paper + GT + SC 
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Unlike the previous two fungi, the data (Table 2, 
Figure 3 and Figure 5) showed that none of the samples 
inoculated with G. trabeum produced any fermentation 

products (ethanol, acetic acid and lactic acid), suggesting 
that G. trabeum may not be an effective fungus for the use 

in the hydrolysis of pure cellulose, albeit to its highly 
documented potent cellulolytic enzyme systems on other 
substrates (Cohen et al., 2005; Daniel et al., 2007).  There 

are several possible explanations to these observations. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Time course of acetic acid production. The data points represent the averages of three independent 
experiments (n=3). Note: PC – P. chrysosporium, TR – T. reesei, GT – G. trabeum, SC – S. cerevisea. Time zero is after 
4 days of solid state fermentation with a specific fungus (P. chrysosporium, G. trabeum or T. reesei). 
 

Firstly, G. trabeum is reported to lack the complete 
combination of the enzymes needed for efficient cellulose 
hydrolysis on pure cellulose (Mansfield et al., 1998; 
Cohen et al., 2002). Unlike the cellulases of T. reesei, G. 
trabeum lacks cellobiohydrolases, although 
endoglucanases were detected (Henriksson et al., 1999). 
This is an important finding as, in many cases, CBHs are 
also more efficient on cellulose than EGs (Henriksson et 
al., 1999). However, brown-rots compensate the lack of 
processive cellulases by degrading biomass largely 
through non-enzymatic mechanisms, via a hydroquinone-
driven system for the production of extracellular reactive 
oxygen species (ROS) in an ‘enhanced’ Fenton system 
(Paszczynski et al., 1999; Cohen et al., 2002). The Fenton 
system plays an extremely important role in the early 
stages of cellulose degradation by brown-rot fungi. 
However, this reaction only occurs under favorable 
conditions, catalyzed by a low-molecular-weight peptide, 
termed Gt factor (Wang and Gao, 2003). According to Xu 
and Goodell (2001), these conditions must include the 
presence of iron, hydrogen peroxide, biochelators, oxalate 
and light. Iron is present in woody biomass as bound iron 
and ferric hydroxide complexes. However, in our 
experiment, the absence on iron on the highly cellulose-
pure filter paper may have adverse effect on the natural 
iron dependent hydrolytic processes.  

Secondly, another study done by Cohen and 
colleagues (2005) added that the cellulolytic system of G. 

trabeum may hydrolyze amorphous cellulose but not 
crystalline cellulose. However, in the degradation of 
amorphous cellulose, hydrolysis is partial with the end 
product being cellotriose instead of glucose, a 
phenomenon also reported in other microorganisms 
(Reese et al., 1959; Lejuene et al., 1988).  This same 
observation is supported by our result with the negative 
glucose reading in all samples inoculated with G. trabeum. 
This is further supported by another related work done by 
Schilling and colleagues (2009) that observed the 
difficulties of brown-rot fungi in metabolizing lignin-free 
microcrystalline cellulose.  

The production of other fermentation co-products, 
such as, acetic acid and lactic acid were also recorded. 
No lactic acid was produced by any of the samples at the 
end of the five-day experiments. Acetic acid was only 
detected in the samples inoculated with T. reesei at 2.57 
g/100 g filter paper (Figure 5). This trend is supported by 
other studies that documented high production of acetic 
acid by T. reesei (Chambergo et al., 2002; Shrestha et al., 
2009).  This is due to the enzymatic actions of the two 
paralogous genes for aldehyde dehydrogenase (ALD1 
and ALD2) capable of converting acetaldehyde to acetate, 
present in the T. reesei genome (Chambergo et al., 2002; 
Shrestha et al., 2009). Furthermore, other genes such as 
acetyl esterases are also reported to function in the same 
manner and interestingly, these genes interact with other 
cellulases for the production of acetates from other 
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biomass (Harrison et al., 2002). Acetic acid (0.95 g/100 g 
filter paper) was also detected in the sample treated with 
Spezyme CP (Figure 5).  

By comparing these three fungal species, our study 
suggests that the most efficient fungal species in 
saccharifying pure cellulose was P. chrysosporium 
followed by T. reesei, while G. trabeum failed to effectively 
liberate fermentable product. P. chrysosporium is worth 
noted as not only it is the cellulolytic enzymes system 
efficient, but it offers greater flexibilities when 
lignocellulosic biomass is the feedstock for ethanol 
production. This is because P. chrysosporium also 
harbors lignolytic enzyme that may be advantageous in 
eliminating a major inhibitor in conventional SSF, which is 
lignin (Ballesteros et al., 2004). 

In conclusion, the results from our study of the solid 
state fermentation of cellulose-rich filter paper for the 
production of ethanol indicated that the fungal species P. 
chrysosporium and T. reesei are potentially useful for this 

form of application.  Further experimentation may be done 
by inoculating these two species onto more complex 
feedstocks that are lignin rich, such as switchgrass, corn 
stover and other perennial grasses, to evaluate their 
enzymatic efficiencies against more recalcitrant 
feedstocks and the presence of potential inhibitors (Varga 
et al., 2004; Wyman et al., 2005). Direct fungal enzymatic 
saccharification mechanisms for SSF are indeed very 
promising and can lead to a more environmentally 
friendlier processing, whereby ethanol producers can skip 
or minimize the environmentally detrimental pretreatment 
steps. This will ultimately lead to a more economically 
sound ethanol production when manufacturers can 
produce their own enzymes in situ to supplement the use 
of expensive commercial preparations. 
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