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Abstract: Approximately 2 billion people worldwide are infected with helminths and the resulting helminthiasis is a heavy
health burden for developing countries. Parasitic helminths are a class of multicellular parasites, mainly including trematodes,
tapeworms and nematodes, wtih complex life cycle involving multiple developmental stages and typically one or more hosts.
Understanding the growth, development, pathogenesis and transmission of these parasites at the molecular level is of great
significance for the diagnosis and treatment of helminthiasis. Genetic manipulations, which alter the expression level of target
genes, have greatly promoted the biomedical research. In recent years, with the release of genomic data of worms, genetic
manipulation techniques, such as RNA interference and clustered regularly interspaced short palindromic repeats (CRISPR)
gene editing, have been increasingly applied in the studies of parasitic helminths. This article reviews the progress of genetic

manipulations in important medical worms, as well as the methods of genetic manipulations, which would be expected to inspire

the future functional study in parasitic helminths.
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(small inhibitory RNA, siRNA) . & e drh—1 (dicer
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thine—guanine phosphoribosyltransferase, HGPRTase) .
24 4 )5 3 AL B B (mitogen—activated protein kinas-
es, MAPKs) .G I {RBEZ K (G Protein—Coupled Re-
ceptors , GPCRs ) F14< 4% 3 4 i RNA (long non—coding
RNA, IncRNA) S5 L4819 T 4857 PEREIRA 452
SIRNA VES 2/ BRI, S T4 118 AR 2 1%l
W 1 HGPRTase BRI RIA , I 90 UK AT AR R A1
RNA 7 Ho A 6% W 4 055 1 bt [R) R 43541 0, i
F B (Fasciola hepatica , Ji 5T By B )12 4857
S20% H1 (Clonorchis sinensis )" 1% [ W H, (Opisthor-
chis viverrine; i HL )28 2155

2% HUrft RNAGHOAR B R HE I R R e, 2010 4F 1
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Fig. 1 Schematic diagram of genetic manipulation techniques in parasitic helminths
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Table 1 Examples of genetic manipulations in parasitic helminths
W) Species K Genes J77% Methods 25 Results
2E It Nematodes
I BRI ZE 1 Trichostrongylus colubriformi ubiquitin RNAi HRSET 8k IR
ELPG [ A2k H Nippostrongylus brasiliensis acetylcholinesterase RNAi mRNA K H I ] b Fe 833
Al 2% 1 Brugia malayi beta—tubulin, RNA polymerase II large subunit RNAi HRFET
WL 22 B Onchocerca volvulus cathepsin I, cathepsin Zlike cysteine proteases RNAi 41 TE vk a5 7 1391
serine protease inhibitor RNAi 4y JEvk W Rz s e T
Y5 17728 B Haemonchus contortus beta~tubulin RNAi I HGZ B ) R RERT
K G MIHELE W, Heterodera glycines cysteine proteinase RNAi W B LE AT RS
T 7 MR 4548 Ht Meloidogyne incognita duox RNAi BRI/
3500 R, Ascaris suum YOt R FUE. SN RO 58] 4 D't 2R il T 431
RS IR LR L Strongyloides ratii CD4+ T cell epitope 2W1S FUESTN 1 F T 4HARLIRI 7= A Th2 Fl Treg 35
T 441
HEAIRI LR H Strongyloides stercoralis unc-22 S i FARRAGE EE NI RERE , B
Je Tl T REE A )
rol—6 HE DK i SR B!
lax—4 HE DK BT
% Ht Trematodes
S G LK S Schistosoma mansoni cathepsin B RNAi SPE YL Sl RS AT
Hypoxanthine—guanine phosphoribosyltransferase &P RNAi Ha R /e
LINC101519, LINC110998, LINC175062 TP RNAI Ha Rl /124
2216 3EH KMBERNAL - 250/ K B T8 5 ¢ 1) R A0
POL R FUE S G 385 St 3R TG A1)
myocyte enhancer factor 2 BRSSP R 1) WIN'T 3 5 5 PR )7 S i test
wl FEH G HPE PE TR
acetylcholinesterase Fe R g it B R 5 5 L IR EOR P T [0
H A il 3L Schistosoma japonicum cathepsin B1 AP RNAI Bk H R G
GRM7 KA RNAI TR D s Ok R 222
W TEW B Fasciola hepatica cathepsin B/cathepsin L RNAi BEIRE RATE EAE T PR
A 52l Clonorchis sinensis Csenolase RNAi HARFGETRT
ZE[E P B Opisthorchis viverrine cathepsin B RNAi JET T RS
tetraspanin—1I RNAi Rz Ak ; 3 By AR )
granulin-1 BP9 i BRSO T R
2 11 Cestodes
PR e 7 % 18 Moniezia expansa actin RNAi R WA AN A 2 R0
% B iER % 1. Echinococeus multilocularis 14-3-3 RNAi mRNA R HIE ] g Fe A3
{8 11 I FE 28 38 Hymenolepis microstoma Hox RNAi mRNA B I (H JC I g e 132

ZYREAFAE H RSO0 ARBA AARROG, I POLER
BV Ay s i PRI PR A ARG R LA 5 AR R o T
AR EE TG WD BB YR 5T 51 RNA AR
(spliced leader RNA, SL RNA) 1Y J& 2l 7 . SL RNA ,
SL RNA £ A 55 1 pGL-3 A 56 it 2 il 5 H T i
5] 324 (open reading frame, ORF) #1151 3" A1 #H
PEIX (3" untranslated region, UTR) Ml poly(A)Y&5 . FEfH
FHBE AR A 328 326 B L 902 WA - 7E A il A
S IR bR # . RYOCRMA S A5
REGRCR T LASEBRFRIRRCEHMELII E o IS 7EAL 4

25 R R TR N A At 22 2 2R 055 HU P AR AR T 12
(e R B/ R SRR IEOE S S N DO/ i -4 |
Hts AR 221N, JRASTERR 43 A A L rp RS g R 2
B S (HRIRBCREA G, T L 1 Rk
T, LIANG %% 3 Sm23 Jii 3h T 2R BB A5 75 1M1 %
U N 258 mCherry I BEBE Western Blot & 5], {H
R WLJE SN P AARGE o T ORAR AR G LR T &
HH AT R i A R DR A EOC T R AT AR 15
FRTE R IRty BE A SR I B, ELEAE B b A7 1
e SN PU RSN TWATE (SRl G
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4 FHEEHERESLE(Gene editing)
SRR I FE IR AN [F] , A DR G 4 0 o X A Y
BE DR 2 8R4 T 2 0 A3, T 52 i R e PR 338 110 4
Ao BBOR K R 28 30 -1 & J' , NN F B 48 1% 1
NI (zine finger nucleases, ZFN ) B 5L SFEOE TR 3%
. W) #% R 1§ (transcription activator—like effector nucle-
ase, TALEN ) , £ 21 H 180 1] B J ol SCHE 52 13 910 /4
K% R B (clustered regularly interspaced short palin-
dromic repeats, CRISPR/CRISPR associated nuclease,
Cas9) . B HHi— I T CRISPR/ Cas9 ()3 DA J i
MTFR , CEAEZ R A S8 1 380 B hE 7y Bt
FRAYIE R G 4 o CRISPR HA IR T A TR HU 25 19 Bl
BB o 20 B R ] Cas A D) A 75 CRISPR RNA
(crRNA) B9 51 5 & il A 152 1 5 # DNA K 3557,
CRISPR/Cas9 i3 ) 3 [H 25 4 1k 2 W 151 1 7718, Cas9
B4t 5 DNA b (] B XA 4B 28 )7 (protospacer adja-
cent motif, PAM) #H HAE LA E AT, SR J5 Cas9— B 5 [n]
F RNA (single guide RNA, sgRNA) & & %) 1 7+ DNA
Y XLHELZE T, sgRNA i1 RNA-DNA Bl i X 3551
HAMEEE, BEJS , Cas9 i) HNH £5 43 A1 RuvC 45+ 3a
3 VT EEE S BRANARREEE | LLS AL R S 1 XU Wy
2 (double-strand breaks, DSBs)™!, #& J5 i i3 dE [6] I
A ¥ty % $% (non—homologous end joining, NHEJ ) & & Wt
24 e BEALEE R 4 A LB 2K (insertion—deletions,
INDELSs) 5% [A] # 22 7] 1& & (homology—directed repair,
HDR) , AR DNA AR IE B A i, w L s [m] 5
R R4 T v B TR 118 52 S A MIRBE R B 5 A2,
A7 27 A 05 2 OG- CRISPR i D8] 25 6 14 I H]
B AR B2k d N He 2 e oA A DG
PRI 2 iz o Horh 2 2R by 3 22 I8 55
IR R A2 R ) 8 N R BB PR AT 1 ik PRI e e 1 235K
S IR 2 e (4 WF 52 R I CRISPR/Cas9 % 48X % 4L A

RNA F3
[ % ik ] [ 4k dsRNA B¢ siRNA }"-:

-----------------

L. g

______________

’ 1
R T N

F A= 3 B B %) 1 A R R AT T wne—-22 FE RN AR B
W H A B A RV E SR L, 235 SR A AR = 340 iy
(infective third—larval stage, iL.3) " i %€ 2] 5 75 0 B2 AT
2R B unc—22 2878 M BL G e A0 | B Hupkaz sk R [T
PERERhE , BJE T el s mEs ", 765 —wids
FR B A FE BHIE N D BT s R T3 41
HEAT rol-6 BRI 52748 5 , AR S L3 4 BL B 2 S 1)
R 8l A 8 B 98 it 1B 28 CRISPR/Cas9 £ 4t
i R tax—4 3 R 23 52 i 2 25 [ £ L A R BT,
W 1 b A & T CRISPR/Cas9 1Y K& [H] 4 #4125 .

ITTIPRASERT 45z S 75 2 [ i W 1 #5477 CRISPR 2
R o AT LA SR B A Y ol 25 1A 4 B 22 TR A
PSS RO) B e P = Ol |1 Y T R A R S AT o
fi 3 Th2 B G388 S N 1) R ZE A F o R %98 &3
FE DR G AL 3L A LB PR 2R b Y RE T T R
(L v 3 2 0 P 7 R R G R AR 0.19% . —
T X 2. 1 AH Bk B3 7 (acetylcholinesterase, AChE) [
WEFE48 VR A F 2 H0E 225 A R0 R , 2 IE IR 6 g
it A I % AR 2 AL R S8 v B AR, 24 1
W At oA H B R A T 2 TR R T 5 R A B,
JOFL R P i 0 1 S T A L 5 RS A S ) B A P 2 e
i PR A R B R G 250 <0.219%" . SULT-
OR JE R G i — i 6 2 RS 1, 12 1 28 A8 WA M g
ST i R S I P 24 ) 7% 24 M (oxamniquine ) Y
Ptk , 76 4d F CRISPR/Cas9 2 4t X il W MU A%, H, | i B
FRE Wl 51T SULT-0R $& X B bR i, WF 5% 3 & 04T
Xk 3 Fh & B B B B G R AR TE 0~2.0% 2
Ji] , e R s A A (0.3%~2.09% )", 2 [ T e
) 5 PR 4t 6 LA 408, ARUNSAN 250040 2 1 41 X %
W H1 WKL AR 25 1 granulin—1 3% K 1) CRISPR/Cas9 %
A W 3ot 16 38 Ao JS ARSI 2 3 P 41 DNA |9 NHE]
RORR 1.3% W 450 4 4 19 06 288 3 U T R, 1

HF 41 (CRISPR/Cas9)
[ msamanm | @it giderna |

3% TR RNP 5
&

_______________

e 1
VTR WL )
i RIES '

_______________

EUEEN

[ (o e R B A K PR e ]

B2

B AU B RNAG 52 D 4 B A BOR B IR

Fig. 2 Technology roadmap of RNAi and gene editing techniques in parasitic helminths
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2 5 FHETE B A 2T 2 A R AR O LA T i
SR A0 e AR R, ARk, Bl A k[ 4 B
18 D P 2 ok, W ) s DRI 4 R DG AT 9 A 8 T 1
Jontes-ssT {H 3 BRI TR ATH A BE $RAT 7T 3t 14 1) 5 R 4 i e
PR, 055 2 A BE D 2 BB AR AT AT AR KA $E T 23 1]
5 BERIPRYBEIETE

AN R R | 2o 2638340 2 BE R i, 2108 B
dsRNA | JFURL 2 4 5 RNP 52 4 ) 55 S5 00N 1 1)
Ao TIRT 80 e A M 128 306 3 BRI ) 2 5 I ik 12
PRCRAYE IR, AR F 2% ) T,
5.0 @ik RUIETE RNAIECH M. dsRNA I
sIRNA 7T LUa i B B i) 3 sliz i B A b
AR RSN o R 22 oy A i deoh 3z i el
Qi W R e AT AR PR A 5 B v AR B AT 2 AR
o &%) Cathepsin B 5 KA S50 Al T — R 40T
AR 2 20 d, i B — fem] BLSEBLR T 60% TR AL
AR O L IR A AT < AR, T R
52 wFIEk  ALALIE— R UL A0 0y
U5 A B L LB A S L 2 A L A B AL
Bt (transient pores) , (175 ZM 53+ #E A7, NDE-
GWA 5" 2 [ i W dL vf LB Wl 2 6§ (alkaline
phosphatase) h # 5E (Rl b 35 T 4 R i 26 1R & 19 RNAG
R S50 R AR 3 AR R 3R 9 20 A #E A D i
AL >40% , 1M HL ZE AL 21 >80% o 1% 45 4R /R HL 22 AL
REAS (2 SN o 1a) 1 W R A A 36 2% . VN
HT T HL 5 L2 0 A TR — s R A543, dsRNA
A siRNA B X AR PL e IR s . gL E L
9 T BORL R B 1 2 A W) (ribonucleoprotein,
RNP) SR I3F 11536 o 52 TR M A 28 BT )
Z U SE e A v 2 L R AL A AR I RNP 26 i
Z AR IR TR H R 2 A R e AR AR A
iy 4070 004 007608 s — T T, i B AL AR AT AR 2k AL A
FHRCR T A PR, 25 5% T vl 2 FL ok 1) 2 Y H [ 2
(Nippostrongylus brasiliensis) i 2% ¢ 6 bR ic () dsRNA
I mRNA J& , 2558 8 7R BUA B Bzt o1, JF H.
mRNA 2 % (45 ' 2 o A A I 2] 22357
53 RpiEg RRUESELARBTEPE HER—
P58 o AR 2 R MM A B R B AR S5 44 (syn-
cytial gonad) , A5 58 4 L i 101 AN 58 88 37 1) AR B IR
VE S DNA, Fifi %5 A5 5 400 64 B2 S0 U5 DNA A LR 3
AL RGN N, T A A B DR S 3 T R [ 4
— T B R ST, 5 AR g A X, 1L P G i
J¥ %1 (coding sequence, CDS) A1 3”3 A 2 15 X 45 05 75
JUfF o aE A 1) 2 B 2 A B 2 BT 2k i AR A
B RN TE 5 eef—1A J3 8l 751 519 Cas9 £ F 24, LI

K U6 JA 81751 51 unc—22 gRNA 844, BF 5% &A1
i 2] T B une—22 3L 28 28 R A 1 A0 1
HORNZE B AR S H AT R I HiRGE -
5.4 AuFEEg ALY R WM
— i UL I e R A G DL IR 0 W % (polyethyleni-
mine, PED) 3 22 1% 43 1) FH 25 1 5 5% (cationic poly-
mer) F1 ARG T R 3222 %43 A9 R B AR (liposome ) o AD-
AMS FEHez 5 T B AR Sy e Yeasiin] , e & b s
518 3% dsRNA Fl1 CRISPR/Cas9 RV ) , 45 J /R % 07
BAENS B PR TH 2k A RN AL BAMA L ] (>66% )
FHE R 2815 AR (540% ) . LIANG Z5E40) {i i} 1
PEDLE: Sm23 Ji 81 51 5/ mCherry 98 6 25 11 5 [H 1%
6 1) = FC L H b i LR 1Y) 6 R BE RS B West-
ern Blot F il 2] .
5.5 Rtk EWILAYT R 2 T
W2 G |32 5 s EL A R B R S A v e O AN e
73 (adenovirus) .\ JIf #H 3¢ 9% 8% (adeno—associated virus)
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