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【摘要】　硝苯地平诱导的药物性牙龈增生（nifedipine-induced gingival overgrowth，NIGO）是指由长期服用高血

压药物硝苯地平（nifedipine，NIF）引起的牙龈增生，是一种药物不良反应。NIGO 具有发病率高，患者基数大

的特点，是临床上最为常见的牙龈增生类型之一。既往关于 NIGO 病因的研究多聚焦于 NIF 的直接药理作

用，但近年来的研究表明，炎症亦是 NIGO 的关键风险因素。菌斑是牙周炎症的核心始动因素，然而细菌在

NIGO 发病机制中的具体作用尚不明确。本文对相关研究进行综述，探讨细菌参与 NIGO 发病的潜在途径：①
以 NIF 为代表的高血压药物可引起口腔菌群失调，导致牙周致病菌相对丰度增加。在宿主对细菌的免疫应

答中，牙龈成纤维细胞释放的炎症趋化因子可与 NIF 产生协同效应，促进胶原过度生成或募集免疫细胞参与

组织纤维化进程；②转化生长因子-β（transforming growth factor-β，TGF-β）在纤维化疾病中具有重要作用，细

菌感染可显著上调 TGF-β 水平，进而促进上皮－间充质转化，或通过激活其下游信号通路直接参与牙龈纤维

化；③细菌还可通过激活 Wnt /β-catenin 通路、干扰整合素 α2β1 表达、抑制 miR-200 调控细胞周期等多种途

径，导致牙龈成纤维细胞增殖异常、胶原合成增多而降解减少，最终加剧 NIGO。综上，细菌是 NIGO 发生发展

中的重要因素，对接受 NIF 治疗的高血压患者进行口腔菌斑控制和健康管理，对预防和缓解 NIGO 具有重要

临床意义。未来研究可聚焦 NIGO 患者口腔菌群与宿主免疫细胞间的相互作用，为 NIGO 的预防和治疗提供

新的策略。
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【Abstract】 Nifedipine-induced gingival overgrowth (NIGO) refers to gingival hyperplasia caused by long-term use of 
the hypertensive drug nifedipine (NIF), and it is a drug adverse reaction. NIGO is characterized by a high incidence 
rate and a large patient base, and it is one of the most common types of gingival hyperplasia in clinical practice. Previ⁃
ous studies on the etiology of NIGO mainly focused on the pharmacological effects of NIF, while in recent years, it has 
been proposed that inflammation may also be a major risk factor for NIGO. Plaque is the initiating factor of periodontal 
inflammation. However, the role and mechanism of bacteria in the pathogenesis of NIGO remain unclear at present. 
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Therefore, this article reviews relevant research and finds that bacteria may be involved in the pathogenesis of NIGO 
through the following pathways: ① Hypertensive drugs represented by NIF can cause dysbiosis of the oral flora, increas⁃
ing the relative abundance of periodontal pathogenic bacteria. The inflammatory chemokines released by fibroblasts in 
the immune response to bacteria can work in synergy with NIF to promote excessive collagen production or recruit im⁃
mune cells to participate in tissue fibrosis. ② Transforming growth factor-β (TGF-β) plays a significant role in fibrotic 
diseases. Bacterial infections can significantly increase the level of TGF-β, promoting epithelial-mesenchymal transition 
or allowing TGF-β and its downstream substances to directly participate in gingival fibrosis. ③ Bacteria can also cause 
massive proliferation of gingival fibroblasts, increased collagen synthesis and reduced degradation by activating the Wnt/
β-catenin pathway, interfering with integrin α2β1 expression, and inhibiting miR-200 to alter the cell cycle, ultimately 
exacerbating NIGO. In conclusion, bacteria may be an important factor in aggravating NIGO, and oral health manage⁃
ment for patients with hypertension should be given due attention. Future research can focus on the interaction between 
the oral microbiota and immune cells in NIGO patients, providing new strategies for their prevention and treatment.
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mesenchymal transition; extracellular matrix; fibrosis; oral diseases
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药物性牙龈增生（drug - induced gingival over⁃
growth，DIGO）是指长期服用特定药物引发的牙龈

增生，是一种药物不良反应，主要致病药物包括抗

癫痫药物、钙通道阻滞剂（calcium channel block⁃
ers， CCBs）、免疫抑制剂等。在上述药物中，CCBs
所引起的 DIGO 因其庞大的用药群体而备受关注。

CCBs 作为我国治疗高血压的一线用药，其临床使

用率高达 46.5%［1］。硝苯地平（nifedipine，NIF）是

其中最具代表性的药物，常用于治疗高血压和心

血管类疾病［1-2］，但其诱导的牙龈增生（nifedipine - 
induced gingival overgrowth，NIGO）发病率可高达

20%～83%［3-4］。尽管新一代 CCBs（如氨氯地平）在

药效和安全性上均优于 NIF［5］，且在国外市场已成

为心血管疾病主流用药，但 DIGO 发病率仍可达

3.3%～31.4%［6-7］。因此，相较于抗癫痫药物和免

疫抑制剂，CCBs 所致的 DIGO 因其患者基数更大，

其公共健康影响更为显著。而在 CCBs 类别中，

NIF 因其较高的 NIGO 发病率和广泛的临床使用，

使得其诱导的 NIGO 疾病模型更具有代表性。临

床上，重度 NIGO 常伴随牙周炎症，不仅损害患者

的口腔功能与美观，亦严重影响其生活质量。在

我国，高血压发病率高达 31.6% 且呈持续上升趋

势［8］，NIF 作为其常用药物无疑加重了庞大高血压

患者群体的牙周健康负担。

目前研究认为，NIGO 的发病机制主要与 NIF

的药理作用直接相关，涉及胶原合成－降解失衡、

上皮间充质转化、细胞外基质过度沉积、细胞增殖

与凋亡异常等多种因素［9-12］。然而近来的证据表

明，菌斑控制水平可能是影响 NIGO 的主要风险因

素［13-15］。研究发现，NIGO 患者龈下菌斑中，牙周致

病性微生物的相对丰度显著高于无增生者［16-17］；此
外，动物实验表明，口腔链球菌感染可加重 NIGO
增生程度［18］。上述发现提示，口腔微生物可能与

DIGO 的发病过程间存在密切关联。因此，深入研

究菌斑微生物在 NIGO 发生发展中的作用及机制，

对指导高血压患者的口腔菌斑控制，实现 NIGO 的

有效预防和治疗具有重要意义。

1　细菌在药物性牙龈增生中的作用基础

1.1　菌斑生物膜的形成、作用与失衡

口腔作为与外界相连的器官，有着涵盖 1 000
余种微生物的复杂微生态系统，其中细菌种类可

多达 700 余种［19］。在口腔环境中，细菌主要以生物

膜的形式存在于牙齿及其他组织表面，即菌斑生

物膜。菌斑生物膜的形成始于唾液糖蛋白和龈沟

液形成获得性膜，随后细菌经黏附、共聚集、成熟

等阶段，逐步形成结构复杂的成熟生物膜，存在于

牙齿表面、龈沟等部位。在健康个体中，口腔菌斑

生物膜主要由早期定植菌（如链球菌、放线菌等）

组成［20-21］。这些共生菌与宿主之间维持着稳定的
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共生关系，它们通过产生碱性代谢产物、细菌素和

过氧化氢等物质，共同维持口腔环境的稳定，并抑

制潜在的致病菌［22-23］。当宿主的健康状况发生改

变时，例如宿主免疫功能受损、口腔卫生状况不佳

或唾液分泌减少等，口腔微生物平衡可被打破。

这种口腔微生态失调可导致牙周致病菌，如牙龈

卟啉单胞菌（Porphyromonas gingivalis，P.g）、福赛坦

氏菌（Tannerella forsythia，T.f）等厌氧菌的相对丰度

显著增加，逐渐在生物膜中占据主导地位［24-25］。这

些病原菌可通过代谢活动改变口腔环境［26］，促进

牙 菌 斑 的 积 累 和 结 构 变 化 ，进 而 引 起 牙 周

炎症［27-28］。
1.2　高血压药物对口腔微生态的影响及 NIGO 龈

下菌斑特征

高血压药物可间接或直接地影响口腔微生

态：其间接作用体现在通过影响口腔物理化学环

境进而影响口腔菌群，如高血压药物可降低唾液

腺分泌功能、增加唾液粘度和促使局部微环境酸

化［28-30］，而以上改变可影响细菌代谢，从而诱导微

生态紊乱［30-32］。药物的直接作用则表现为对口腔

菌群的选择性调控，如 Silveira 等［33］发现高血压个

体中 P.g、中间普氏菌（Prevotella intermedia，P.i）和

具核梭杆菌（Fusobacterium nucleatum，F.n）的检出

水平更高；而 Zhang 等［34］、Kim 等［35］则通过宏基因

组测序、16S rRNA 测序发现，抗高血压药物的使用

与牙周致病菌 T.f、齿垢密螺旋体（Treponema denti⁃
cola，T.d）、龈沟产线菌（Filifactor alocis，F.a）的相对

丰度显著升高相关，这可能与硝酸盐还原菌丰度

降低有关。这种由药物驱动的微生态紊乱，在

NIGO 患者的龈下微环境中尤为显著。在 NIGO 病

变区域，异常增生的牙龈组织导致牙周袋加深，不

仅造成了菌斑的机械性滞留，也形成了局部缺氧

的微环境，这为厌氧菌的生长创造了有利条件。

已有研究通过 PCR 技术检测 DIGO 患者的龈下菌

斑，结果显示在牙龈增生的患者龈下菌斑中，P.g、
P.i、T.d 和 T.f 的相对丰度显著高于服用 NIF 但未出

现牙龈增生的高血压患者［16-17］，表明特定的牙周致

病菌可能在 NIGO 的病理生理过程中起重要作用。

2　细菌促进牙龈增生的分子机制

2.1　牙龈成纤维细胞的免疫识别与胶原生成作用

牙龈成纤维细胞（gingival fibroblasts，GFs）作为

牙龈结缔组织最丰富的细胞之一，其主要功能为

合成与重塑胶原蛋白等细胞外基质（extracellular 

matrix，ECM），从而维持组织结构完整。虽然已有

研究表明，DIGO 相关药物能上调 GFs 炎症相关基

因的表达、促进牙龈的炎症反应［36-37］，但细菌感染

仍然是驱动牙周炎发生发展的始动因素。GFs 可
表达多种模式识别受体，在炎症过程中发挥重要

作用［38］，包括 Toll 样受体（Toll-like receptors，TLRs）
家族的 TLR1-9、蛋白酶激活受体-1 等［39-40］。其中，

TLRs 在细菌识别中占主要作用，例如，TLR2 可识

别 P.g 的菌毛和 F.a 的脂磷壁酸、TLR4 可识别革兰

氏阴性菌的脂多糖（lipopolysaccharides，LPS）等［41］。
这些细菌可激活不同的通路分泌白细胞介素 -1β
（interleukin-1β，IL-1β）、白细胞介素 -6（interleukin-

6，IL-6）、白细胞介素 -8（interleukin-8，IL-8）等促炎

细胞因子和趋化因子，招募免疫细胞清除病原

体［42］。Lu 等［43］的研究证明了 IL-1β 和 NIF 具有协

同作用，可通过 IL-6-STAT3-Colα1（I）级联反应加

剧胶原的过度合成，为炎症在 NIGO 发病中的作用

提供了重要证据。

2.2　细菌的促上皮－间充质转化反应

牙龈上皮是牙周组织的第一道屏障，在抵抗

细菌的侵袭中具有重要作用［44］。研究表明［3］，
DIGO 患者牙龈组织中，常观察到细胞间黏附减

少、基底膜降解和组织纤维化，提示上皮－间充质

转 化（epithelial-mesenchymal transition， EMT）在

DIGO 发病中有重要作用。EMT 是指上皮细胞失

去自身特性而转化为具有迁移能力的间充质干细

胞的过程，如 E-钙黏蛋白是维持上皮细胞间连接

的关键分子，其表达下调被视为 EMT 启动的重要

标志。在组织纤维化过程中，EMT 被认为是成纤

维细胞的重要来源之一。DIGO 相关药物可通过上

调转化生长因子-β1（transforming growth factor-β1，
TGF- β1）、锌指 E 盒结合同源异形框蛋白 1（zinc 
finger E-box binding homeobox 1，ZEB1）、锌指 E 盒

结合同源异形框蛋白 2（zinc finger E-box binding 
homeobox 2，ZEB2）、Snail、Slug、睾丸蛋白聚糖 1
（sparc/osteonectin， cwcv， and kazal-like domains pro⁃
teoglycan 1，SPOCK1）等多种 EMT 相关因子，促进

EMT 的发生［3， 45］。其中，TGF-β1 被视为最强 EMT
调控诱导分子，经 TGF-β/ Smad 轴可驱动多个转录

因子的表达，从而调控 EMT 进程［46］：如 Snail 是
TGF-β1 诱导 EMT 的首要驱动因子，与 Slug 在抑制

E-钙黏蛋白过程中具有协同和补充作用［47］；ZEB1、
ZEB2 则可抑制上皮标志物并激活间充质基因来推

动细胞表型转化，其表达不仅受 TGF-β/ Smad 通路
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调控还受 MAPK、Wnt/β-catenin 等信号通路的共同

调控［48-50］；而 SPOCK1［45， 51］作为纤维化模型中的 
EMT 促进因子，其表达可被 TGF-β1 通过 Smad 与磷

脂 酰 肌 醇 3- 激 酶（phosphatidylinositol 3-kinase，
PI3K）/蛋白激酶 B（protein kinase B，AKT）信号通路

上调，进而增强 Snail 和 ZEB1 等转录因子的作用，

最终促进细胞黏附的降解与基质重塑。在以 TGF-

β1 为核心的复杂复杂调控网络中，牙周病原菌也

可通过其致病物质来促进 EMT。例如，F.n 可通过

TLR4 信号通路激活 Akt 直接影响 E-钙黏蛋白的表

达［52-53］；张升华等［54］证明 P.g 可通过 TGF-β/Smad
轴诱导 Snail 和 Slug 等转录因子；Zhang 等［55］发现 F.
n 可促进 Snail 1 表达；Abdulkareem 等［56］、Saliem
等［57］则证明 P.g、F.n 可通过不同途径诱导 Snail、
Slug 和 N-钙黏蛋白的表达，从而下调 E-钙黏蛋白。

因此，EMT 可能是牙龈上皮组织对牙周病原菌的

应激反应。在 NIF 等药物与局部菌群的协同作用

下，EMT 进程被异常激活，导致上皮细胞向间充质

细胞转化，为细胞外基质的异常沉积提供条件，最

终共同驱动了 DIGO 的纤维化病理进程。

2.3　细菌与细胞外间质沉积

2.3.1　细菌与细胞因子的促纤维化作用　TGF-β1
是 DIGO 发病的关键调控因子，除诱导 EMT 外，还

具有刺激胶原蛋白合成、诱导结缔组织生长因子

（connective tissue growth factor，CTGF）表 达 的 作

用［58-59］。研究证实，NIF 可上调牙龈组织中的 TGF-

β1 水平［45， 60］。而 Schweizer 等［61］使用细菌来源的

LPS 干预正常人真皮成纤维细胞 8 h 后，TGF-β1 的

表达显著上调，说明细菌或其致病物质感染也可

能是 NIGO 发病中 TGF-β1 的重要诱因之一。CTGF
作为 TGF-β 的关键下游介质，在介导成纤维细胞

增殖和胶原过度生成中发挥重要作用［62-63］。Wied⁃
maier 等［64］、Situmorang 等［65］通过细胞实验证明，细

菌感染可诱导 CTGF 的表达上调。然而 TGF-β1 分

泌来源广泛，绝大多数免疫细胞均可分泌 TGF-β
1［66-68］。尽管以上实验证明细菌感染可升高 TGF-β
1 水平及其下游介质，但其主要来源却不明确。

GFs 在对牙周病原菌的免疫应答中可产生炎症趋

化因子以募集免疫细胞到炎症组织［38］；且体外研

究证明 NIF 可诱导 M0 巨噬细胞向 M1 极化，而该过

程可能进一步募集能大量分泌 TGF-β1 的 M2 巨噬

细胞［69］。因此，GFs 与巨噬细胞的互作可能在 NIF
存在时更为显著，纤维化可能是 GFs 对细菌感染的

应激反应，参与组织修复或免疫调节。

2.3.2　细菌激活 Wnt / β -catenin 信号通路　Wnt / 
β⁃catenin 在多种组织器官纤维化中发挥重要作用，

该信号通路的激活能诱导 GFs 增殖并活化为肌成

纤维细胞，从而促进 ECM 大量沉积［70-73］。研究表

明，在 NIGO 患者的牙龈组织中，Wnt / β⁃catenin 信
号通路相关蛋白表达显著高于正常牙龈［74］。此

外，多种病原细菌也可通过不同的机制激活 Wnt/β
-catenin 信号通路，从而影响宿主细胞的增殖和炎

症反应［75］。例如，F.n 可凭借其毒力因子结合宿主

细胞 E-钙粘蛋白等分子，激活 Wnt/β-catenin 通路

或通过其黏附蛋白 FadA 激活 β -catenin 来上调 
Wnt 信号［76］；P.g 通过其牙龈蛋白酶降解 E -钙粘蛋

白，破坏其与 β ⁃ catenin 的膜结合复合体，使 β ⁃
catenin 释放并进入细胞核，或通过维持 β⁃catenin
磷酸化状态以保持转录活性［77］；而肺炎克雷伯菌

通过其产生的 LPS 可激活 Wnt/β -catenin 通路［78］。
这 些 证 据 表 明 ，牙 周 致 病 菌 是 NIGO 中 Wnt/β
-catenin 通路异常激活的重要因素。

2.3.3　细菌对细胞周期相关 miRNA 的调控　miR-

200 是一类非编码小 RNA 分子，属于微小 -RNA
（microRNA， miRNA）家族，可以通过多种机制影响

细胞周期的不同阶段，从而影响细胞的增殖和分

化。其在牙龈增生、口腔粘膜纤维化疾病中显著

下调，可能是疾病的关键分子［79］。在 DIGO 中，环

孢素 A 通过作用于 miR⁃200 / ZEB2 轴，抑制 miR⁃
200a、上调 ZEB2 表达，从而促进细胞增殖［80］。牙

周病原菌同样表现出对 miR-200 家族的调控能力，

Krongbaramee 等［81］在肥胖合并牙周炎小鼠模型中，

注射 P.g 来源的 LPS 可显著降低小鼠牙周组织中

miR-200c 表达水平。尽管有研究显示，miR⁃4651
在 NIGO 中可抑制牙龈间充质干细胞增殖［4］，可能

成为治疗 NIGO 的靶点，但目前没有直接证据表明

牙周病原菌可直接影响 miR-4651 的表达。

2.4　细菌与胶原降解失衡

胶原降解减少是 NIGO 组织纤维化的核心病

理环节。生理条件下，胶原的降解途径可分为整

合素 α2β1 受体介导的细胞内吞噬和基质金属蛋

白酶（matrix metalloproteinases，MMPs）介导的细胞

外吞噬过程，两条途径相互协同，共同维持着 ECM
的动态平衡。整合素 α2β1 是一种金属蛋白，其功

能依赖 Mg2+和 Ca2+的相互作用。该受体与Ⅰ型胶

原具有高度亲和力，二者结合可使 Ca2+内流，进而

触发一系列细胞内信号传导途径，促进胶原在细

胞内吞噬和降解［82］。NIF 作为钙通道阻滞剂可能
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干扰这一过程，降低整合素的结合力，从而抑制胶

原的内吞降解［83］。在 NIGO 中，除了药物的直接作

用，牙周病原菌亦可通过多种机制干扰整合素介

导的降解通路。Baba 等［84］的研究指出，P.g 与成纤

维细胞共培养后，整合素 α2β1 和整合素 β3 显著

减少；Liu 等［85］则通过实验发现厌氧消化链球菌

（Peptostreptococcus anaerobius， P.a）可与结直肠癌细

胞的整合素 α2β1 受体直接结合发挥作用。由此

推断细菌的入侵可能抑制整合素 α2β1 的表达或

通过竞争性结合整合素 α2β1 受体，从而减少胶原

降解。整合素 α2β1 与Ⅰ型胶原的结合不仅影响

细胞内吞噬，还影响 MMP1 基因的表达［86-87］，其编

码产物 MMP1 在细胞外降解胶原蛋白和弹性蛋白

中发挥重要作用［88-89］。尽管在常规炎症反应中，

MMPs 的表达通常会被上调以促进组织重塑［90］，但
在 NIGO 的复杂环境中，情况并非如此。有研究指

出，细菌对 MMPs 表达的上调作用具有细胞特异

性，仅黏膜上皮细胞（如结肠、膀胱、肺上皮细胞）

被诱导，成纤维细胞、单核细胞、角质形成细胞等

无响应［91］。此外，TGF-β 也可调控 MMP1 的表达，

抑制胶原降解过程。因此在 NIGO 患者中［92］，在
NIF 和细菌的共同作用下 MMPs 的表达受到抑制，

但具体的作用机制，还需进一步验证。

3　总结与展望

中老年群体是高血压和牙周病的高发病群

体［8， 93］，高血压与牙周炎之间可相互影响［94-95］。抗

高血压药物可通过改变唾液性质和选择性调控口

腔菌群，促进口腔微生态紊乱，导致牙周病原菌丰

度增高［35］，反之，牙周病原菌亦可加重高血压［34］。
牙周病原菌的协同作用可增强其入侵能力与致病

性［96-97］。既往研究认为，牙周病原菌主要通过降解

ECM 破坏牙周组织［89］，但在 NIGO 患者中研究者却

发现牙龈增生与炎症反应并存且相互加剧的现

象。据此推测在 NIF 的参与下，细菌可能在牙龈纤

维性增生中可能起到重要作用。

牙龈上皮是牙周组织非特异性免疫的第一道

防线，在与牙周病原菌相互作用的过程中，GFs 释
放的炎症因子和趋化因子可参与纤维化过程。如

IL-1β、IL-6 可与 NIF 协同促进胶原过度生成；而趋

化因子招募的免疫细胞如巨噬细胞可能是 TGF-β1
的重要来源。因此，纤维化也可能是牙周组织的

应激反应。TGF-β1 不仅可促进 EMT，还直接参与

组织纤维化。牙周病原菌如 P.g、F.n 等也可通过

不同途径下调 E-钙黏蛋白来破坏细胞间连接，该

过程不仅促进上皮－间充质转化，还有利于细菌

的进一步侵袭［98］。此外，细菌还可通过激活 Wnt / 
β ⁃catenin 通路、干扰整合素 α2β1 表达、抑制 miR-

200 表达而改变细胞周期等作用，使 GFs 大量增

殖、胶原合成增多而降解减少，最终加重 NIGO 的

病理进程（图 1）。

目前，NIGO 中细菌感染与 NIF 的相互作用机

制尚不完全清楚。临床研究表明，对于轻度增生

患者，在不更换抗高血压药物的情况下，通过牙周

基础治疗彻底去除牙石即可显著改善症状［99］；对
于牙龈增生显著者，则需更换抗高血压药物，联合

牙周基础治疗和抗生素［100］（如阿奇霉素、米诺环

素），以取得更好的疗效。然而，长期使用广谱抗

生素有引发口腔菌群失调及继发念珠菌感染的风

险。若牙龈严重增生，保守治疗效果不佳时则应

考虑手术治疗，如牙龈切除术、牙龈成形术等；术

后需加强口腔卫生管理，以防止复发。因此，NIGO
的早期预防和治疗显得更为重要，在高血压患者

的的用药初期，即应由内科医生和口腔医生共同

指导，进行相关的健康教育，并采取措施预防

NIGO。然而目前对高血压患者的口腔健康管理以

及 NIGO 的预防和早期治疗仍然缺乏重视。深入

阐明细菌在 NIGO 发病中的具体作用，可为其治疗

提供新的理论依据与方案，如针对差异菌群使用

窄谱抗生素减少副作用，或根据多因素构建风险

预测模型以制定个性化治疗方案，有利于高血压

患者的口腔健康和血压控制。展望未来，可利用

高通量测序等先进技术，深入探究牙周病原菌、

GFs、免疫细胞三者互作网络，为 NIGO 的发病机制

提供新的视角。
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