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高原低氧环境下脑老化脑龄预测研究进展

王 硕 1综述， 吉维忠 2审校

摘 要： 随着全球人口老龄化加速，大脑老化的评估与预测已成为神经科学的重要研究方向。脑龄作为衡

量大脑生物学年龄的指标，可用于评估个体认知功能并预测神经变性疾病风险。神经影像学技术能够揭示大脑结

构与功能状态，为脑龄预测提供重要依据。高原低氧环境可能加速大脑老化，其神经影像学特征为评估脑老化提

供独特视角。本文综述了高原低氧环境下脑老化脑龄预测的最新研究进展，重点介绍脑龄预测模型构建、结构磁

共振成像（sMRI）、弥散张量成像（DTI）、功能磁共振成像（fMRI）的应用及高原低氧对脑结构、功能和机制的影响，为

未来研究提供参考和方向。
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Research advances in brain aging and brain age prediction in a high-altitude hypoxic environment WANG Shuo1，
JI Weizhong2.（1. Graduate School of Qinghai University，Xining 810016， China；2. Department of Neurology，Qinghai Pro⁃
vincial People's Hospital，Xining 810007， China）

Abstract： With the acceleration of global population aging， the assessment and prediction of brain aging have be‑
come an important research direction in neuroscience.  Brain age， as an indicator for measuring the biological age of the 
brain， can be used to assess individual cognitive function and predict the risk of neurodegenerative diseases.  Neuroimag‑
ing techniques can reveal the structure and functional state of the brain， providing an important basis for brain age predic‑
tion.  The hypoxic environment at high altitudes may accelerate brain aging， and its neuroimaging features provide a 
unique perspective for assessing brain aging.  This article reviews the latest research advances in brain aging and brain age 
prediction under a high-altitude hypoxia environment， with a focus on the construction of brain age prediction models， the 
application of sMRI/DTI/fMRI， and the impact of high-altitude hypoxia on brain structure， function， and mechanisms， in 
order to provide a reference and directions for future research.
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随着全球人口老龄化程度的不断加剧，老年人口

在总人口中的占比持续上升，对公共健康以及社会经

济发展产生了深远影响。大脑老化属于一种自然且

复杂的过程，它在生命的早期阶段就已开始，并会随

着年龄的增长而加速，此过程涉及了从亚细胞到器官

层面的多方面变化，具体表现为脑容量减少、皮质变

薄、白质退化、脑回变窄以及脑室扩大等特征［1］。然而

尽管脑老化是普遍存在的现象，但每个个体的大脑老

化轨迹却不尽相同，不同个体在大脑结构和功能方面

的变化速度以及程度存在差异［2］，这些差异有可能受

到遗传、生活方式、环境因素等影响。神经影像学数

据可体现大脑的健康状况，为评估脑老化过程中潜在

的风险如认知功能减退提供了有力的工具，凭借从这

些数据中提取的相关特征并构建预测模型，我们可以

从全新的视角去观察并理解大脑老化的复杂过程。

脑龄研究始于对大脑认知功能的详细剖析，借

助神经影像技术来评估大脑的生理状况，以此揭示

其生物学老化程度，这一研究为理解大脑老化机制

提供了新视角，在神经变性疾病方面也有意义［3］，如
阿尔茨海默病（Alzheimer disease，AD）、帕金森病

（Parkinson disease，PD）等。脑龄差（brain age gap，
BAG）指的是预测脑龄和实际年龄的差值，能衡量大

脑的生物学年龄是偏高还是偏低，脑龄为评估个体

大脑老化速度提供了量化手段。结构磁共振成像

（structural magnetic resonance imaging，sMRI）、弥散

张量成像（diffusion tensor imaging，DTI）和功能磁共

振成像（functional magnetic resonance imaging，fMRI）
等已广泛用于脑龄预测研究，通过提取灰质、白质、

功能连接特征，构建模型以及评估个体脑龄及潜在

病理变化［4］。高原低氧环境会影响大脑供氧，引发

神经生理变化，加快大脑的老化进程，其机制可能不

同于平原地区［5］。本文主要从脑龄预测模型构建、

sMRI、DTI、fMRI以及高原低氧环境下脑老化研究应

用展开综述，为未来相关研究提供参考和方向。
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1　脑龄预测模型的研究

1.1　脑龄预测模型构建要素　脑龄预测模型

的构建是脑老化研究中极为关键的部分，通过量化

大脑的生物学年龄，来评估个体大脑的老化程度以

及潜在的神经变性风险，此模型构建过程繁杂且具

有系统性，主要覆盖数据收集与准备、特征选择与提

取以及最终的预测模型训练，该模型基于多模态神

经影像数据（sMRI、DTI和 fMRI），这些影像技术可提

供大脑的详细解剖结构、功能连接以及白质微结构

信息，凭借从数据中提取的关键特征，运用统计学分

析或者机器学习方法估算个体脑龄。构建脑龄预测

模型时，对MRI数据进行充分处理至关重要，可去除

噪声和变异性，为特征提取和模型训练奠定基础。

持续优化模型结构和参数，有助于提升预测准确性

与可靠性［6］。构建脑龄预测模型是一个系统化的过

程，为脑老化研究以及神经系统变性疾病的早期诊

断提供关键科学依据。

1.2　sMRI 的应用研究　sMRI 作为一种结构

影像学技术，能够高分辨率地呈现脑灰质密度、皮质

厚度和皮质曲率等脑结构特征，T1加权成像（T1WI）
可反映大脑形态变化，为脑龄预测提供形态学依据，

T2 加权成像（T2WI）则对低氧相关脑白质病变尤为

敏感［2，7］。
脑龄预测模型从早期的传统机器学习逐步发展

到深度学习和迁移学习。Franke等［8］采用支持向量

机（support vector machine，SVM）结合灰质体素强度

进行脑龄预测，平均绝对误差（mean absolute error，
MAE）为 5 年；Cole 等［9］利用高斯过程回归（Gaussian 
process regression，GPR）模型，在 1 537例健康受试者

中分别以灰质和白质预测脑龄，MAE 为 6. 2 年和

6. 16年。随着深度学习的兴起，沈嫣然等［10］提出轻

量级多尺度卷积神经网络（Lightweight multi-scale 
convolutional network，LMCN），在 E-NKI 和 Cam-CAN
数据集上分别获得 5. 16 年和 5. 97 年的 MAE，相关

系数高达 0. 947和 0. 904。此外，有学者引入迁移学

习方法，通过跨数据集训练进一步降低 MAE，实现

了比单纯卷积神经网络更优的泛化性能［11，12］。综合

来看，随着模型方法的演进，从传统机器学习到深度

学习再到迁移学习，脑龄预测精度不断提升，同时对

大样本和多模态数据的利用也更加充分。这表明迁

移学习和 LMCN 在 sMRI 脑龄预测中具有较高的实

用价值与发展潜力。

1.3　DTI的应用研究　DTI作为一种基于弥散

加权成像（diffusion-weighted imaging，DWI）的MRI技
术，可测量水分子在脑组织中的扩散方向和速率，从

而提供白质微结构信息。主要指标包括各向异性分

数（fractional anisotropy，FA）、平均扩散率（mean dif‑

fusivity，MD）、轴向扩散率（axial diffusivity，AD）和径

向扩散率（radial diffusivity，RD），可反映白质微结构

完整性和年龄相关变化［13］。随着年龄增长，FA通常

会下降，提示神经纤维可能出现退化或损伤，在缺氧

状态下，这种微观结构变化更加明显。

Guo等［14］以FA和定量各向异性（quantitative an‑
isotropy，QA）为特征，使用线性回归、岭回归、支持向

量回归及前馈神经网络等 6 种方法进行预测，结果

显示 FA 特征的预测精度优于 QA，且可作为白质老

化的生物标志物。Wang 等［15］则采用三维卷积神经

网络对FA数据进行训练，通过嵌套交叉验证和十倍

交叉验证保证模型稳健性，取得MAE为 2. 785年、相

关系数 r为 0. 932的优异性能，体现出深度学习在脑

龄预测中的潜力。其他研究也表明，DTI 参数（如

MD、RD和 FA）与年龄呈相关性，多模态方法结合特

征选择和集成回归可进一步提高预测精度［16，17］。
综合来看，DTI 在捕捉白质微结构和脑网络信

息方面具有独特优势，FA指标对年龄相关的白质变

化尤其敏感。与 sMRI相比，DTI提供更多结构连通

性信息，但模型对数据质量和样本量要求较高。未

来，随着更多高质量样本和多模态融合研究的深入，

DTI 在脑龄预测中的应用价值有望得到进一步

提升。

1.4　fMRI的应用研究　fMRI通过血氧水平依

赖（blood oxygen level-dependent，BOLD）信号反映神

经元活动，能够评估大脑功能网络，包括默认模式网

络（default mode network，DMN）、前额叶网络、视觉-

运动网络等，对脑龄预测具有重要意义［18］。其中，静

息态功能磁共振成像（resting-state functional mag‑
netic resonance imaging，rs-fMRI）专注于大脑静息状

态下的自发活动，操作简便且患者依从性较好［19］。
早期研究发现，随着年龄增长，功能系统内连接

逐渐减弱，而系统间功能连接有所增加，但多数研究

未深入解析年龄与网络振幅的关系。Hrybouski等［20］

指出，老年人在所有功能系统中 BOLD 信号振幅普

遍较低，感觉运动网络的年龄差异最明显，而网络拓

扑结构整体保持相对稳定。Chang等［21］通过最小绝

对收缩和选择算子从 rs-fMRI数据中筛选关键特征，

建立正态参考模型并进行留一法验证，MAE为 2. 48
年，显示该方法在脑老化预测中具有较高精度，并为

识别潜在脑年龄生物标志物提供了可靠依据。

综合来看，fMRI 能够提供功能动态信息，捕捉

年龄相关的网络变化，适合分析认知功能相关网络。

然而，与 sMRI和DTI相比，fMRI模型计算复杂度高，

对样本量和扫描质量要求严格，可解释性相对较低。

多模态融合研究结合功能与结构信息，有望进一步

提升脑龄预测的精度和生物学解释价值。
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脑龄预测模型在平原人群中已显示出较高的预

测精度和生物学解释力，能够量化个体大脑的生物学

年龄并揭示潜在的神经变性风险。然而，高原低氧环

境下的大脑老化可能具有独特机制，例如氧化应激增

强、血脑屏障（blood-brain barrier，BBB）退化以及基因

调控异常等。这提示，单纯依靠平原人群数据的模型

可能无法完全反映高原大脑老化的特征。

将脑龄预测模型应用于高原人群，不仅可以通过

BAG 量化低氧环境对大脑结构和功能的加速影响，

还能为运动、营养及氧疗等干预策略提供客观的评估

依据［22］。通过这种方法，模型研究与高原脑老化机制

研究得以紧密结合，为个体化脑健康管理提供科学基

础。这也为后续高原低氧脑老化研究的结构、功能、

分子机制及干预策略提供了理论支撑和量化工具。

为了直观展示不同影像模态在脑龄预测中的研

究成果与方法差异，表 1汇总了近年基于 sMRI、DTI
和 fMRI的典型研究，包括样本量、年龄范围、特征类

别、预测模型、验证方法及MAE。

2　高原低氧脑老化研究

2.1　高原环境与脑老化概述　衰老是不可逆

的生物过程，其中脑老化对神经元结构和功能的影

响尤为突出，是认知功能下降及神经系统变性疾病

（如 AD、PD）的重要危险因素［23］。高原地区环境特

殊，包括低氧、低气压、强紫外线、昼夜温差大、年温

差小、降水稀少等，这些因素可能加速脑老化进程。

长期慢性低氧暴露与脑老化过程在生理表现上存在

相似性，例如认知功能下降、神经元结构变化及脑血

流调节受损［24］。中枢神经系统对低氧最为敏感，缺

氧状态最先在该系统中表现出来，表现为灰质体积

减少、皮质厚度下降以及白质微结构异常，这些变化

可导致学习、记忆和执行功能的退化。影像学研究

显示，高海拔地区长期居住人群的大脑区域（如海

马、前额叶皮质和顶叶皮质）存在显著体积缩小，同

时伴随 BOLD 信号的下降的情况。这提示，高原低

氧环境可能通过多途径加速脑老化［25］。
值得注意的是，脑龄预测模型为量化这些结构

和功能变化提供了强有力的工具。通过 BAG，可以

评估低氧暴露对大脑老化的加速效应，并进一步揭

示氧化应激、BBB 退化及基因调控异常等机制在个

体脑老化中的贡献。此外，模型还可为干预策略

（如运动、营养及氧疗）提供量化评估，使高原脑老

化研究与预测模型紧密结合，实现从机制解析到应

用干预的完整逻辑链。临床研究也表明，间歇性低

氧干预可改善帕金森病患者的运动功能和认知表

现，提示高原低氧对神经系统变性疾病的影响具有

潜在可调节性［26］。
2.2　氧化应激与线粒体损伤　慢性低氧是高原

脑老化的重要应激因素，可诱发氧化应激，活性氧（re‑
active oxygen species，ROS）和活性氮（reactive nitrogen 
species，RNS）在细胞内积累，损伤 DNA、蛋白质及脂

质，最终导致神经元凋亡和功能障碍［27］。Huan等［28］研
究表明，高原低氧暴露可导致大鼠脑组织线粒体膜电

位下降、ROS生成增加，并引起神经元凋亡。

线粒体是缺氧损伤的核心靶点，其稳态失衡、能

量代谢紊乱和自噬功能下降进一步加剧脑细胞受

损。高原慢性低氧通过调控缺氧诱导因子 1α
（HIF-1α）、SIRT1、AMPK及 c-MYC等关键分子，影响

糖酵解-线粒体能量轴。具体表现为细胞对线粒体

能量依赖下降、糖酵解增强，同时伴随自噬功能减弱

和细胞应激反应失衡。这不仅解释了高原脑区神经

元易损性，也与影像学中观察到的灰质和白质微结

构变化相关。例如，海马区神经元密度下降与FA值

降低呈负相关，提示线粒体损伤可能是白质微结构

退化的重要驱动因素［29］。

表1　近年不同影像模态脑龄预测研究的样本量、特征类别、模型方法及MAE比较

文献

Franke等［8］

Cole等［9］

沈嫣然等［10］

Guo等［14］

Wang等［15］

Chang等［21］

影像模态

sMRI
sMRI
sMRI

DTI

DTI

fMRI

样本量（例）
约 650
1 537
2 137

约200

约300

约250

年龄（岁）
19~86
18~90
18~88

20~80

20~80

18~85

特征类别

GMD
灰质/白质

灰质体素

FA/QA

FA

功能连接/
ALFF

预测模型

相关向量机

高斯过程回归

LMCN（轻量级多尺度卷

积网络）
线性回归/岭回归/SVR/
神经网络

3D卷积神经网络

最小绝对收缩&选择

算子

验证方法

留出法验证（164例对象）
10折交叉验证

10折交叉验证

留一法交叉验证

嵌套交叉验证&10折交叉

验证

留一法验证

MAE（年）
4. 98

6. 2（灰质）、6. 16（白质）
5. 16、5. 97

FA最好：3. 1

2. 785

2. 48

注：sMRI，结构磁共振成像；DT，弥散加权成像；fMRI，功能磁共振成像；GMD，灰质密度；FA，各向异性分数；QA，定量各向异性；ALFF，低
频振幅；MAE，平均绝对误差。

··94



中风与神经疾病杂志 2026 年 1 月 第 43 卷  第 1 期

此外，氧化应激可激活炎症通路，引起细胞因子

表达异常，如 TNF-α、IL-1β及 IL-6升高，这与认知功

能下降及神经可塑性受损密切相关。动物实验和高

原人群研究均提示，抗氧化干预可部分缓解 ROS介

导的神经损伤，为干预策略提供理论依据。线粒体

损伤不仅直接影响神经元存活，也可能通过调控凋

亡基因进一步加速神经元丢失［30］。
2.3　血脑屏障退化与炎症　BBB 在脑老化过

程中逐渐退化，其通透性增加使有害物质和血清蛋

白更容易进入脑组织，进一步引发氧化应激和炎症

反应，加速继发性神经元变性［31］。高原低氧可通过

自由基生成和三叉神经血管系统活化，导致脑水肿

及BBB功能障碍，表现为毛细血管通透性增加、内皮

细胞结构改变以及紧密连接蛋白（如 claudin-5、oc‑
cludin）下降。Wang等［32］研究表明，药物干预可通过

改善 BBB 通透性，缓解高海拔低氧诱导的脑水肿。

例如，贝司他汀可保护小鼠BBB功能，从而缓解脑水

肿，这一结果证实了 BBB破坏在高原低氧损伤中的

关键作用，也为临床干预提供了潜在靶点。

临床影像学研究也支持这一机制。Takata等［24］

发现，高原脑水肿患者的 T2信号增强与 BBB破坏呈

正相关，提示影像学指标可反映微观 BBB损伤。炎

症因子如 IL-1β和TNF-α水平升高，可干扰脑内微环

境稳态，削弱神经元可塑性与生存能力。BBB 退化

还可能影响脑龄预测模型的敏感性，因为 FA、功能

连接及其他结构和功能影像指标可能受到炎症相关

水肿干扰。这提示，高原脑老化研究应综合考虑结

构变化、炎症反应及微环境因素，以提高脑龄预测的

准确性和机制解释力。BBB退化所导致的微环境失

衡可能与氧化应激和凋亡路径相互作用。

2.4　基因调控与凋亡　高原低氧环境可通过

基因调控影响脑老化。Huan等［28］研究显示，高原低

氧可激活线粒体相关凋亡通路，改变 Bcl-2、Bax、
Fas、P53 及 c-jun 等凋亡相关基因表达，导致神经元

凋亡，这些分子水平的变化解释了脑区神经元易损

性，为高原脑老化提供潜在机制依据。

HIF-1α 在低氧条件下调控细胞生长与凋亡，

P53 可抑制 HIF-1α 的转录活性，同时调控 P21 及

Bcl-2表达。进一步研究显示，低氧诱导凋亡与影像

学中灰质萎缩、皮质厚度下降及白质微结构完整性

降低密切相关。分子机制与影像指标的关联，为高

原脑龄预测模型提供潜在的生物学解释。同时，基

因调控变化可能影响个体对干预措施（如运动或药

物）的敏感性，提示个体化干预的必要性。

2.5　干预因素与可塑性保护　尽管高原低氧

加速脑老化，但运动和营养干预可提供有效保护。

规律运动可提升脑源性神经营养因子（brain-derived 

neurotrophic factor，BDNF）分泌，促进神经可塑性和

认知功能，尤其在记忆力和执行功能方面效果明显。

富含抗氧化剂、Ω-3 脂肪酸及低糖饮食可降低氧化

应激，改善能量代谢，减缓脑老化［33］。
总体而言，高原低氧环境对脑结构、微环境及基

因调控均产生多层次影响。随着脑龄预测研究的发

展，将影像学指标与分子机制结合，可为高原脑老化

及认知障碍的早期干预提供科学依据和可操作的

策略。

3　未来展望

随着全球人口老龄化加速，脑老化机制及其干

预策略已成为学术界的重要前沿研究方向。近年

来，神经影像学驱动的脑龄预测模型被引入，以量化

个体大脑生物学年龄，评估老化程度及潜在神经变

性风险。不同影像模态在脑结构与功能表征方面各

具优势，但同时存在局限性。借助深度学习和迁移

学习技术，研究者已能对多模态影像数据进行高效

解析与特征挖掘，并在算法优化与技术迭代下不断

提升分析深度和预测精度。然而，当前研究在将脑

龄预测模型应用于高原低氧环境时，仍面临显著的

空白与挑战。首先，绝大多数现有模型基于平原人

群数据构建，直接应用于高原人群可能因环境特异

性而导致评估偏差，缺乏针对高原低氧环境的基准

模型与校正标准。其次，高原脑老化的机制研究（如

氧化应激、BBB退化）与脑龄预测的影像学生物标志

物尚未深度结合，限制了模型结果的生物学解释力。

最后，该领域仍缺乏涵盖不同海拔、民族和暴露史的

大样本、多中心队列研究，严重制约了模型的泛化能

力和临床转化潜力。

为应对上述挑战，未来研究应优先扩大样本规

模与地域覆盖，纳入多民族、高海拔人群，整合结构、

功能及分子影像等多元数据，深入探讨高原脑老化

规律。同时，将研究成果转化为实际应用，可为高原

地区提供个体化脑健康管理和早期干预，从而有效

预防认知障碍和神经系统变性疾病。具体而言，高

原人群的个体化干预研究可探索运动、营养及氧疗

等多维组合策略，以增强神经可塑性和认知储备。

此外，未来研究亟需进一步融合分子机制、影像学特

征和脑龄预测模型，构建跨尺度研究框架，以更全面

解析高原脑老化过程及干预效应。通过这些努力，

高原脑科学研究有望实现理论与实践的协同发展，

为保障高原人群大脑健康提供坚实基础。
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