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Abstract:

come an important research direction in neuroscience. Brain age, as an indicator for measuring the biological age of the

With the acceleration of global population aging, the assessment and prediction of brain aging have be-

brain, can be used to assess individual cognitive function and predict the risk of neurodegenerative diseases. Neuroimag-
ing techniques can reveal the structure and functional state of the brain, providing an important basis for brain age predic-
tion. The hypoxic environment at high altitudes may accelerate brain aging, and its neuroimaging features provide a
unique perspective for assessing brain aging. This article reviews the latest research advances in brain aging and brain age
prediction under a high-altitude hypoxia environment, with a focus on the construction of brain age prediction models, the
application of sMRI/DTI/fMRI, and the impact of high-altitude hypoxia on brain structure, function, and mechanisms, in

order to provide a reference and directions for future research.
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