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Research advances in the expression and regulation of non-coding RNAs in ischemic stroke ZHANG Shuo',
CUI Yang',SUN Zhongren'*, ZHOU Xinyu', CAO Yu', YIN Hongna®. (1. Heilongjiang University of Chinese Medicine, Har-
bin 150040, China;2. The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine ,Harbin 150001, China)

Abstract: Ischemic stroke is a cerebrovascular disease with high incidence and disability rates. Non-coding RNAs,
as important regulatory factors for gene expression, play a key role in the development and progression of ischemic stroke,
but their specific mechanisms of action remain unclear. This article systematically reviews the expression characteristics
and regulatory roles of microRNAs, long non-coding RNAs, and circular RNAs in ischemic stroke and reveals the patho-
physiological mechanisms of non-coding RNAs in ischemic injury by regulating the processes of cell apoptosis and au-
tophagy, inflammatory response, blood-brain barrier integrity, and neuroregeneration. In addition, non-coding RNAs
have shown the potential as biomarkers for the prediction, diagnosis, and prognostic evaluation of ischemic stroke. This ar-
ticle also analyzes the limitations of current research and proposes future research directions, so as to provide a theoretical
foundation for exploring the mechanism of action of non-coding RNAs in ischemic stroke and developing innovative diag-
nostic and therapeutic strategies.
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1 ncRNA M52 K IhBE4F1E

ncRNA & — S HA A1 D RE(EAS 4 A% 25 1 o 1Y)
RNA 73T, 75 BE PR R 3R 145 0 4% v 47 3 G B A £
NFEEEH A 94 30423 , B AR il 3/4 (1)
B L % 2 5t L (BN AN 3] 39% 1) e 51) 52 B 20 i 2 1
T, TR A R S5 A1 UV B neRNA - M3 40 4% 1 R %
1, ncRNA 0 43 4 %5 5% ncRNA (<200 nt) Fl K %
ncRNA (>200 nt) , H 763 45 £ /)y RNA (microRNA ,
miRNA) | K %% JF 43 % RNA (long non-coding RNA,
IncRNA ) F1FRR RNA (circular RNA, circRNA) o

AR ZE A neRNA B AT 4% 11 20 45 10 45 44 FR 1
A6 s . miRNA 2K 2 22 M R Y
FEE N TEPE RNA, B 325 HaE b0 sr o iy
miRNA 7] 38 5o 26 sl JE 28 SR A2 T8 1%, Bl 5 4 38
) RNA B FUCERE & W, AT g 51 5 2 50 )
mRNA . IncRNA il 5 LA-5 mRNA ARLY J5 =X i AR
FE PRV SR8 1, A0 B LA IR . 1T cire RNA DI
T L AR mRNA JZ [0 35 4298 i L4 1] 5 FRIR 2544
B9 PR 5% ncRNA, 1] 4 4 b & F circRNA | N % F
circRNA FIZM g F- N & F circRNA .

ncRNA i i 2 Fj fE #2025 3 I 363k
55, miRNA 2580 35 5 8 7] mRNA 19 37 -JE #H3
[X (3’ -untranslated region,3’-UTR) &5 &, il il #E uk,
PEFE mRNA FEA# , T FRARA R R k. A
miRNA RERL IR 2K [N )RR, PSSO SE A ]
PI#E 2> miRNA T4 o Rt — > 28 Bk PR
S50 H 2 miRNA FIHE3E [ R0 19 25 A 45
Ho IncRNA WPERIRE R ZRE4L  iTE R G 50 75
5 {5 5 AL T, Q028 3 04 3 4 M Y TR RNA (com-
peting endogenous RNA , ceRNA) A ; 7] 4E A 175 15 Al
Oy FREWT] , 555 1 5 mRNA 25410 54 5% 2l 3%
AR R RS 2 2 G W B FF 2 DNA 5L RNA J7
G 5 B AT R S 40 R R o RNA 2545, SEBLA
[F] 45 5538 % (6] (15 B3 A o circRNA [AAE A 24
R DIREAL , B e T A 5 /N TR R 1 Bk
RNA A 145 5 25 981 3 PR 5 53 s m] A8 59 427 00
2 5 LUK cireRNA BES 5 RNA 456 25 1 B AE i 52
Mo 3 26 F 1A 40 B E 7 . 7E ceRNA [ 2% |
circRNA H1E 5 miRNA B “V345 7 3 o B v 46 4
miRNA 7 1 5 ¥ mRNA 45 &, [A] 3 8 35 5L H 3%
ko BLAN, FGE B IR cireRNA 8 AT 5 D) fig
AR AU B R LA A W2 T R R KB .

2 ncRNA FE &R I 14 i 2= o f9 A #4111

2.1 ncRNAEMMMET 5 A WE

2.1.1 ncRNAWFMMPEERT B 76
PRV O] T B R B 4 BRI LR 2 2R (B-cell lym-
phoma 2, Bel-2) G2 5 55470 ] T J5 PR X 8 ke L5
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ZouPi B OCEZ MR, ] 78 5T T 40 i 3
() miR-22, RE 1% U [1] 410 il pS3-Bel-2 744 i , M 1T
Bo FEER G S B 2T T, Ak,
miR-15 Z %181 5 Bel-2 mRNA 19 37 -UTR X 5454
KD Bel-2 FPE, 1A 2F P9 R 41 i A b 22 o0 0
T, AN miR-15 FEk W mT $2 At 2 fE

IncRNA 41 IncRNA-FOXD3-AS1 i 3 5 miR-765
GEA IR P T8 1 Bel-2 FER 1 13 I 2635, fE HF
M2 T, IncR-SNHG15 7] 3 3 {IL /-6 I 1 1
H5HA 87X 45 & i bk F A, K5 SNHG1S T
BFF miR-24-3p, M T A2 22 41 it 355 A A0 40 1 40 i oA
T2 IncR-SNHG1 BE i 13 5 5 4 45 & Bel-2 )i 8
() P1 X, IE [A) 4% Bel-2 35, 1M F 8 SNHG1 /K F-2>
g A e S SR i 5 45 . cireRNA J7 1T cire-
TLK1 fig %38 i miR-335-3p/TIPARP 3 {5 i il 4 28 ¢
1005, 10 @A cire-TLK1 B8 12 ok 2> o P42 9 - 25 1
Bel-2 #H 56 X 7& [ (Bel-2 associated X protein, Bax) Fll
Db 2R K 4 % IR £ 1 T 3 (cysteine aspartic acid-
specific protease 3, Caspase-3) 191k , [A] B 354 fin 47t 4
T4 1 B 40 ok EL 99 R AR i R 3k, G i 28 0¢
Bt It s L Yae

2.1.2  ncRNA #EAIMEANEM R T EE  Sb
TEPEDR T B b JR BB A E S B B TNF-ac 1L
1B 45 RAEH F 035 T, 3 SE R 15 41 fifg 2 1 1) E
T2 REE A WBET-ZAK Fas IR IRIEIN 24K 1.,
WF5E K B, 0] miR-127-5p Al 3 i 4[] _E 4 Fas 94
T I 537 2 WO R, 505 20 LG 5 e o, s/l 20 i
JHTRI Ah I RIF5E & B miR-146a £ 45 5
Feak IR A a0 B0 F-box M E MR E W B R
#£ F1 10 (F-box and leucine rich repeat protein 10,
FBXL10)fi #F b 22 o 1=, 410 i miR-146a 1] 13
FBXL10 ik /K st gonit s *' . sbsh, A<
Ji BEAIR miR-124 2R3k T fi ({55 B 5 e S s TR
T 3EIE S E T

IncRNA 7 41 25 20 g A0 5 08 1 v [R)RE % 4%
FVEH o IncR-SNHG6 3 i 28 #1195 4 M P9 U RNA
W & AL, 980 miR-181C-5p 5 Bel-2 t#HEAE FH A 5
& M (Bcl-2 interacting mediator of cell death, Bim)
mRNA 3’ -UTR 454, If-f & miR-181C-5p/Bim i
4% 34 58 Caspase-3 25 [176 P£'™ . IncR-SNHG 14 U i
it miR-181¢-5p/SOX6 15 5 il I % 4% v Ji5 1 28 0 4
i 98 T, @ AR SNHG14 1] BEAIK Caspase-3 36 #£1' .
IncR-OIP5-AST 7 i S 1M 753 73 o 38 o, b
OIP5-AS1 A # 1% PI3K/Akt 15 5 1 #% , 410 ) 40 i
JHT=

circRNA Ul cire-016719 11 cire-0072309 43 %) il
1t miR-29¢/Rac-MAPK F1 miR-100/mTOR i i % 5
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PR TR AN B9 K BE,  R d if S
Ny BF B miR-21-5p. 4 ] 42 43 F SPRY1 i
PDCD4 [ R IR A M i 7=

2.1.3 ncRNAFEAM AW 76 A KM
A FE o, miR-100-5p £ ok 1L 5 22325 F 98 i 25 1A
75 2 M 1 (mechanistic target of rapamycin, mTOR)
Fik B, 3 ik miR-100-5p 7] 18 11 45 & mTOR i
T WG IE B, B B AR . miR-26a-5p 211K
S5 T 0 1) 7 5 40 St R A1 6 1 11 S Ak
miRNA, A TG 25 1F 8 2 A 4ok 1w,
miR-202-5p i 1o #0 [) A% AR W) B PR AL 4R R 7 4E
A Akt/GSK-3B {518 A 201 e 11 s>

5% % B, IncR-NONRATT029757. 2 7E i 1fil J&
FEIRW BT, UTERZ IncRNA A] $0HI A8 A 56 26 1
5245 3- 11 Fll Beclinl i) 5235 , AR 40 M B WK,
A IncR-MALAT1 FE SR L f5 3238 B 35 Fl, 24
SORALE ELAEAS A MR P T2 A Bim A9 mRNA, 1 41
A5 PR AR T, 30 2 55 22 A s 4 i

AR RNA 76 [ Wi o 2 v R A R PR 2R
WFIE K I cire-4736 il 1o 55 4 P W miR-206, i B
X} Seipin A4 i £ FH , {2 Seipin /1 S 1Y L bi 44 A
g2 e Ab, cire-HECTD1 i i miR-100/TCDD i 5
B Tl I 2 W B e o A e v Y WA G R S
FHOC TR (e 3B 1Y 42 35 , DA TTT vk 22 90 I Joit 4
Jor ) G i AR 52T Ty AR T S B 40 Y cire-SHOC2
A 3 3 miR-7670-3p/SIRT1 3 1% 3 35 # 25 90 H Be-
clinl \Bax Fl Bel-2 i 3R 3K , W52l 28 T 452, ik 42
71N circRNA AT REAE [ -5 8 12 1) 28 PR 2 h HAy

2.2 ncRNA I RAE RN

2.2.1 ncRNAHFERIEHNF ncRNA ]l
of BRI AT R R R AEVE I . W9 & B miR-
181 4k ek Al bl BRI Jie Jo 400 e vh 0 R AE A 1 TL-10
ek, #E— L R IEPLRIER™ . 7E circRNA J5 I,
A R BEME AR B 1Y AN A I 23K cire-SCMH 1
ALY /D ATAE X TNF-o TL-18 Al TL-6 2542 48 X F- 1Y 36
ik AR AR SRE R

A, neRNA 2 5 4% R o 75 S 8 4 i i
% ORI TP A R T RE . WFSE R, miR-
126-3p/miR-5p 7 ML 45 P Bz 4t AL v o 2% 35 W] 100 i) i
E AN > T7-1 A B PR W 3k, il &k
LINCO02649 AT 4171 il 210 it 2k B P 48 A 17 5 B 53+ 4
IR 20 R P B A4t LG BT, 41 T2 4 17 240 i PR 5
IL-1B . TNF-a 3R 35 , IR i b 22 0F B % AR K
HF-B #ik? . [RIFE, IncR-MALAT1 3 i3 #1 #1 E-i
BER IR M SERE RN I AR FEARFL >
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2.2.2 ncRNA#ERZEAMM  ncRNA 7£
T G s A0 MG Ak S A T A AR . B,
Z i ncRNA 458 78 I o 40 Jifa 3% AL Atk . 0758 %
I, AEARSI /N e S5 240 e ke A - ) < A AR v A i i
PR I DA 1 I 1) miR-145a-5p 30 /0N 5 40 i
MAR J B M1 B[] 37 28 19 M2 BUALE AR 0 78 IncRNA
J5 T , IncR-Neat 1 76 B 1L 5 55 8, 42728 /N i o 20
355 A IS S B, ARG Neat 1 AT 310 /1N 52 S5 240 B 412
KT B, T cire-SCMH D] GE0 1 /1 12 5 24
T4 | G2 A X JRE 5 W

ncRNA £ 2 5 BV i 5 40 i 1% 4L 4% . miR-
181 32 &K REAE 52 ) 2 T2 Jid I 40 B Hh T 9 0E IR 73
KT B cire-CDC14A BEME Il e ify > w5 45 v
STV J 5 40 M 3 Ak, S DR A 5 ek
ncRNA 75 0 2 40 i 5 108 38 352 07 16 7] R & ¥4
cire-SCMH1 AT 417 il S J& bk B4 240 B . B 441 Jifd A1 R % B
I 240 Jf 1) P R e IR BRI cire-CDC14A
AT N2 AU b s 4 R i 2 22 OS] T
RS G A R Ao

2.2.3 ncRNAJEENF-«BfE 5% ncRNA
T S R SR A 5 B AE AN A P RO ER
B EAEAZ N F-kB (nuclear factor kB, NF-«B )i &7
FEJ7 1 . NF-wB 38 BAE R 90 N (I 2 MRt 22
FhncRNA [ R FE S . BF5E R, miR-21 RE % 101 il
TLR4/NF-«B/NLRP3 i ¥ , P85 i ke i )5 42 22 [ 7 5
B T B9 A5 . miR-194-5p REGS 30 1 #0111 fif e
INFE IR - 32 (R0 56 TR 1 6, a2 i 28 5 0E 7
miR-22 A $ ] NF-wB i 5 - B s B o i e

1€ IncRNA J7 [d , 1€ 2 JE B T 40 i, IncR-
NKILA 5 NF-xB 4 AH FAE FH R AT REAR NF-kB i #%
TEPERS  FERZ T, IneR-CAMK2D A G #5559 1
A 3 A 4 5 R 2R AR 1 A P R ) N - B 3 JE 2R
PR T8, VR I8 35 2 0 iG . 7F circRNA
I, IR 5E 22 B, cire-HECTD1 5 miR-133b 1945 4
Al 3 A P R AR miR-133b 5 Vs YR A6 K 152 1R A 56
[l ¥ 3 (tumor necrosis factor receptor associated
factor 3, TRAF3) 3’ -UTR X I 1 45 & , 3 11 5%
TRAF3 [l 335, e 98000 NF-kB 15 S 1%, S8 4
SIEI I

2.3 ncRNA JEF % 57 ks

2.3.1 ncRNAFEEEERLEN BBBIL
8 52 R 32 B T D9 Bz 0 P B] 1) B i TR R
22 ne RNA 3l 2 15 22 5 R] 32 07 =0 8 X 2e 2 1 1Y
Fik. RS LI, miR-148a-3p A 41 BBB AH 6/
VE-cadherin .zonula occludens-1 . claudin-5 /K3, [
BBB & %M. 7F IncRNA J7 1 , IncR-N1LR AJ |-
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claudin-5 Fl occludin 235 , P22 BBB 38 1% 14, T 4%
2 i cireRNA #1598 26, cire-HECTD1 fEf%
S LS PN B A0 L R R R R AR eire-
FoxO3 7] 3 /il BBB i #4538, I 2 5 4
+¥ BBB &5t fa e e

2.3.2 ncRNAWFEKHEERH /KiEIEHEN
(aquaporins, AQPs) , 5§ 5l & AQP4 7£ % 45 BBB T fig
R TR . AQP4AAE M I PN Ak 3 B B /K G
A, 7E R I3 4 A 2 28 v 1Y 3R X 4 RF BBB 1Y
JEAMIAE R CEE, B A PR A 2P
JI2 S5 240 B A miR-145 8 F 52 AT B 5§ 1) AQP4
mRNA (1) 3°-UTR, [&{% AQP4 55 1Y 3235, 7E In-
cRNA J7 [l , MALAT1 il 3 miR-145/AQP4 i 1% 34 i
BT ¢ J5T 4 L v 7K G 3 25 1 AQP4 19 3R34 , 19 i BBB
WM, RIS X RIS R A
) neRNA B3 [ 1 #2 AQP4 ik , 2 5 BBB /K- Al
T BT

2.3.3 ncRNAWENEZ MM Bk
FA) G PN 9 RE A I AT B0 A B A4 i 3 PR 238 ) el
A5 B P R -] B AR, N BBB Y 4548 AU RE 25
L, 1M cireRNA 7E 31X — o 78 A & 75 8 Z 8 4E .
F5E K R, cire-HECTD 1 A8 Jiit i 45 P Rz 20 55
W MR GR ORI/ (B] A0 R T RN
Jie ST R 2 3k, AT 046 P9 Bz - [ Jo 4% 4k , 447 BBB
MISEREME 5 — TR 5E R B, cire-FoxO3 38 23 0%
757 PN Rz 40 ML 1 e i R 1L 175 45 1) BBB i 5, 344
T BBB JIg Jit iz 2R 1 AR R R 2A 1R
IR ISR T, WE Y R BN B AR Y
cire-SCMH 1 38 128 JIE Jrf AH G 2R 118 59 1Y No-F SRR
F LAt A S A B2

2.4 ncRNAFHFEMZRE

2.4.1 ncRNA {2 #F # £ o0 & & I %% il &
# ncRNA ML B M2 U AF TG il 28 A 4 2 fi
B FEMSITNEBRE B REEEEN. 17
N 1K e R e RO 1 o e 1 DR 2.9
T miR-133b M FMIAMA S 25 2 HF T #h 2 T g &2, I
P ML 35285 12 T 18 RhoA 263K LA K8 35 4 285l
g8 Kt Ab |, IneR-MEG3 fiE % 3 37 Wnt/B
-catenin {553 #% Al miR-21/PDCD4 8 15 5 42 52 Wi #ih
Zo TR A AR BEST R, AL TT A WA Y
B miR-132 [ F1 WA A BE A3 R0 45 b 28 5 ) 3 ), 2
P REE LRI, AN, 7 58 i B 5 D) B i
FE 5T, IncR-MALAT1 38 12 18 45 28 fil A 2 25 1 1 6
ik, B 5L IT S b SN D) R F2 A ST, A 2
ZenlYEE
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2.4.2 ncRNAHEMAMASTEE MLl
RBE B F VAP 28 P A A G TR B AR I 2 G
TR 22 10 PR T A A T T . PR g
P IncR-SNHG 15 RE 8 45 542 41 At/ 5 05 440 g 1)
M2 FUAR Ak, DT A2 1 #2848 2 TR B B i .
M2 /)N 58 J5 240 A A YR 1 A1 438 1o 1% 33 miR-124,
RERS (2 HF P e AT B M R D e 52 . e
221 4 PR OT HE AR P, miR-132 9 P2 IR 1L A 50 B
P AR S Sl it X 28 i A B 0T ) A, 1T IncR-
XIST () R ARG B R AT 38 30 HE [7) miR-92a A #2412 1 8 A
BRI 58 PR 1 2R 35, (L 23 400 36 5t It J 79 I 5 2
FE I A 0L A%, 2 IR Inc RN A X0 28 145 5.
JCUIREIRE B s L

3 ncRNAEAEMIREWHIE N

3.1 Bl PERG A T I AE bR R

ncRINA £ BRI il A r ) 5000 v J B0 s 25 2 A
o FRGUMERIEST 2 B & I PRSI ILAE A 2y
ik i A T 2 g o i A v g XU R R
ncRNA 735 56 XU R 28 AH OC 1) o5 B A% v & #4245
BLRPRAEVE T o FEA B9 A S b A T, F
58 K& B miR-223-3p 7E M5 ik 9 £ 5 12 Hh SRk BRAIK
2 1 P miR-223-3p 3 3 0 A B AR B = 5
DRI (1) BE R R

00 Ik BRE B g 284 2 e ot 2 i A o PR ) B
BCHB A , BT 6 BEHAR G P AH DG I neRNA #F47 T
RARE . W R IR, ANFUE 2 i BEH R 15 S
P cire-0006896 F A 7K1 i 2 FH 5, H 5 LDL-C K
ARIEA G Ml B FALEIESE  HE s T N
F A1 ML cire-0006896/miR-1264/DNA F L4 7% fiff 1
A X 28 0 R BE B RS M Dy T AP DA E

3.2 SRR 2 W A bR S

ncRNA 7E B I ik A v 2 W eb i 90 0 ok 4R f0
P ZIRHFFEUESE , F 2 neRNA 75 5 % 40 E 1 2
PR F IR AR, RTAE oy e a2 A 2 v 9 VS HE A
YbREY . WG R ZE K B I i A v 8 i 2%
BTISEE 3222 R R E I miRNAP ek, 78
AN A M AL A R 44 BV 4 AT Y cir-
cRNA, W VE VB FER 2 Witr 7

FEZ W B IEAR J5 T8, 250 neRNA JE 3 H b 3
FR I PR L FH ¥ o RS R T, 3 AR E R 3K 1Y In-
¢RNA (linc-DHFRL1-4, SNHG15 FlI linc-FAM98A-3)
N2 WY, LR R OR T 1% 0 ) i V14 1 22
Fr N Fpp TR S ALY [RIRE L 3R
& FJE A miRNA (miR-125a-5p .miR-125b-5p Il miR-
143-3p) ¥4 12 Wi G, 00 00 afe ot ik 4 o )
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SR 2 I T AL Z R EOR

3.3 a2 v TS A A

FE TR A Hr Dy RE TS B2 50 %75 U9 J5 T, miR-128
FE S JE IR EL 20 9 2R R K S A T AR AN R
Je S AE A O, R B L AT SR A s 7 EE AR 1Y) 4
FRU 0 [RIRE , AN JE I S 40 i R cive-HECTD1 Y 5%
I8 7K P55 G ol P i AR o B8 Y NTHSS 37 43 &8 1E A
K, BRI T M Dy RE B AR A

4 BEERE

ARG IR T neRNA 7 Sl 114 % 25 b g
FKIKFHE S DI REALH , #0557 miRNA [ IncRNA DA )
circRNA £ I e i 453 477 58 7 v ) 2 2 = VE
ncRNA #8280 R LR 1, Bl 2 v 18 2 00 3 B R

.89.

(1) % J | TR B 22 1) 25 57 6 15 ne RN A TE I PREEA A
SRR g M L X8 ne RNA I8 SR 40 38 45 20
MU T 5 [ W B 2R SRE N A BBB 58 B M 45 G A
o BLASE AR SR AP A ) e A e v 7 i
FAta . T ncRNA JHEALE] TR A SR , IS 2
e B 2 450K 3 e B 3R T T ) IR IR 2R 0
ncRNA $UBU4 5110 61 350 (0 4 1900, DA SR T4 K
AR R M % R GE T BT RLIR YT SR 5 AL S
B 2756 P LA A P S AR I 4 ERU) A5 i e R
AE A 1 P8 15 5 5 neRNA 38 & 5 2R 1B
S BEES A IRIT IR T AT Sk . RIS, SRR
I rfneRNA 5 5 1 38 R B2 28 £k Sk 958955 12 W Fl
TG AL TR0 5 F AR

e

circRNA

BRCA 0, %

BT neRNA J#5 R 25 14

SRIMAT, ne RINA 7E BRI Ao A< o A7F 575 450 35875 T 1
Z IR AR R, 5, MR AY R B A A
H—ncRNA I REMEAT , B = X neRNA Z [8] A0 B34
5 X 28 K AR 99 AN TR By Be s 8 22 46 i R e Pkl
P BART A neRNA 287 8] {8 500 e 2%
A EAE I B R 8 ) G 2R LA A neRNA 9 28 75 Gk
I g v PR I S 2t U R 0 1 Bh A T 4
B 2 IRABE ST . Ok, AR R T HEEE
— TP G R IS 8 MALATL 3 i 45
R fipl A G 1R AT B INE R 4 0 28 IS AR AP PE
YEr BBB ST #5155 — W 5E & B MALAT1 il
i miR-145/AQP4 3 B3 hin B IY I 5T 40 i v AQP4 (1)

FIEN N BBB 8 B, A w5 4 . %A
#2715 T ncRNA RJ BEAF- 15 2 B AN BN ] 52 46 1) 57
FtE , F A5 SCHR Y e B LI (] 7 | F bR 4 i

F A A T E— R AR M . A, H AT IR IR
ncRNA WF5E R85 bR FAbn 52w, HZ T
INFEARBAA , fife = R 22 o BTRE MR 5T, XE DL 72
Sy VEASG S R (. 5 A, X SR If PR 52
i) PR 2R 114 ne RNA IR 7™ FE R I, 2000 5] A i R
S A I P i A T R A e R TS )
2, (HA E A neRNA 25 5 P R I i R T 8k 7
PR T X5 ne RNA P2 AL 1 TR A JELR
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BT IX SE Pk R, AR 5E 7 1) AL 4 - (1) 4 2
ARG ncRNA 1848 9 24 « 44 2020 it I e Fn 2 (8]
SEAFFAR, FEHT neRNA TE S [7] 20 g 28 AR5 9% By
BERF R Bh 3, [ ncRNA [8) 59 AH 578 FH AL, 22
S22 S B S P PE LAY (2) TRAS# AT neRNA I fiE
P S BT < 36 e A o AL S B 2 A N 2 v BRI 5
F G505 B 52 B A AU | R B L4 I AR A R O
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