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Hierarchical brain structural alterations in patients with white matter hyperintensity-related cognitive impair-

ment based on morphometric similarity gradient XU Jingxian, CHEN Haifeng, XU Yun. (Department of Neurology,

Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China)
Abstract: Objective

hyperintensity (WMH )-related cognitive impairment and its influence on cognitive function. Methods

To investigate the change in morphometric similarity gradient in patients with white matter
Baseline and neu-
roimaging data were collected from 141 healthy controls (HC group), 66 patients with WMH and normal cognition (WMH-
NC group), and 134 patients with WMH and cognitive impairment (WMH-CI group). The difference in gradient was com-
pared between groups based on the morphometric similarity gradient analysis. The mediating effect model was used to in-
vestigate the association between WMH volume, plasma biomarkers for nerve injury, gradient, and cognitive function.
Results

nificant increase in variability in the second gradient (P=0.036, not surviving FDR correction). There was a significant

The research findings showed significant aberrant alternations in morphometric similarity gradient, with a sig-

negative correlation between the second gradient and geodesic distance (P, <0.001). In addition, visual cortex gradient

spin
played a key mediating role in the association between p-tau,,,/WMH volume and visuospatial function. Conclusion
Patients with WMH-related cognitive impairment have aberrant macroscopic connectivity patterns of the cortex. The aber-

rant pattern of regional cortex mediates the process in which p-tau;, and WMH volume affect cognitive function, which pro-
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vides a new perspective for understanding the potential structural mechanism of WMH-related cognitive impairment.

Key words:  Morphometric similarity gradient ;

Ji%i F1 52 /55 15 5+ (white matter hyperintensity , WMH )
JSEIR/IN MR RO R B b S, B80T 2 RS
SRR A BEAERIE ST i 54 AT B
T 34 AR e B, WMH 23 5 30 o 21 4E o 32 4 )
2% VR R H LA B oI5 P AR A i T RBEOA

TR AL PR PR G ZHIRE T R SR, X
WH9E 2 R IR T 50— B A $8 b L Mk R4 T4 78 Kk
i TR A S YR S AR T 15 IX e 5 L

Mesulam 554 H K Bh B2 AU, 46 705 A BA
B B B SRS B BT DI RE S i BB R
T T A AR LR R AR T 1, DI i e v e M
AN 2l LS R A A R R Tl b Y s ) i R
el AR BB 51 TN THA RN A A

White matter hyperintensity ;

Connectivity gradient

G FUGE PRME 45 SR A 5Y . 7E WMH A OCIA I
B A5 rh , 2 RE 34 4 6 32 23 M S A AL I
WMH 2Pl 46 B Rl A o0 A, i PhAT D REFI2 4
A FE S o R T IR O L IR AR A 45 i e b
JEWT TR, 56— BB Rk SICiZ T Re U A
RN H H HTAE WMH AR SCIA R A AT il = 6 T
JE 25 27 A L) (morphometric similarity , MS) 6 J& 1

75 B #5:2025-09-13; 11T H#7:2025-11-20

E &1 B FHEAHT 2030- Rkl 5258 8 R35 H (20222D0211800) ;
B F H R B 40 I 351 H (82130036) ; 1.5 4 1 5 [ 2 2 B}
(ZDXK202216)

VB2 B AL (P o K 2 I 27 Bt B 8 % I e i 22 R, Y95 B T
210008)

WL 12, E-mail: xuyun20042001 @aliyun. com



- 1078 -

WF9E . MSHEREE W] LU i G 2 RS 2E I, W
g DX TR)E 25 27 0 — 35k, A B T A UG #) ) 2 31
fift WMH X A0

R, AR BT 3T MS B0 77, RGP WMH
AH IR A A R o R RURE 2H 2R i 5 Al 4 4 b
RHE , I3 — 20 R B BB BEAE MBS B2 = A8 b i
15 =1 {5 5 R B (white matter hyperintensity volume,
WMHV) 5NN REZ A A O &R o XA RE U84 42
B I J2 A H 2 1) Z2 4 =3 8] AR AE , W 2k 46 78 WMH
XF NI RE Sl 1 TEZS A AL S At 1 B e A o

1 #EREHRZE

1.1 BFRENT S AWESE IR it 2 B s sl i
BEBE LN A 341 415230, G4 fe B AR 2 (healthy
control, HC, n=141) | X [ 5T & 15 % £ I\ 0 1E % 41
(WMH individuals with normal cognition, WMH-NC,
n=66) F I [ 57 5 {5 5 N 1B 3 41 (WMH indi-
viduals with cognitive impairment, WMH-CI, n=134)
Horp AR I Fazekas £ 3 71 43 (=3) B i WMH 12
WL T A N ) B SR T R 2 A IR S R A i R
(Mini-Mental State Examination, MMSE) F1 52 45 ] /R
A PE i & 2 (Montreal Cognitive Assessment,
MoCA) AT RGEVFAL "1 HERRAR HEALFE 2ob: A
B 22 I B B AR AT | 22 2 S it ™ ] R O A
(] R DR AP s 24 AR S BT 2R R e R s R
T ph 25 Pl R GEPIA

1.2 ML I 2R B2 e
TRRVEAL A #2200 BRI PEAS o SR A TA H T RE
i MMSE 1 MoCA #4794l o = FRICAZ 5 R AY TR
1R300 3 R s 1) 2 > DU T3P A 52420
AEo EZMK A IR &3 (4 1a) ik A F B 7374l
AR EETIRE . 1R A MR I i 4
WA T IPAh 5 5 Th g . BB I i e ik
B A AR ) K C IS S T o BE . ik
DRI 22 03] TPl s [H] D R

1.3 mEds AR e R R
5 - 5 Simoa A5 W MM 3K FEAS . 7E HD-X X &% L it
FHIMAEBERR AL tau, ., 75 1 (phosphorylated tau,q,, p-tau,,)
R A9 RS I p-tauyg, o FE HD-X A ES 1 FH
NAPE A6 0 128 751 60 46 00 1fi 9% B ¥E 4 A% 2 11 42 (amy-
loid-B 42, AB,,) o s THE ity 1T 42 it SR XL P47 46
I AR B LA

1.4 WEILAR GBI RE MBS
e RN 2 w) (BT RE Y, 47 =2 B9 3. 0-T AR
AL TR . FHFIIAT (T AU S A,
B2 5 B} [E] (repetition time, TR)=9. 8 ms, [F] {7 Fs} [H]
(echo time, TE)=4. 6 ms, B ffi (ﬂip angle,FA)=8° =
B=256,4KZ=1. 0 mmx1. 0 mmx1. 0 mm, fFLE} (field of
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view, FOV)=256 mmx256 mm, JZ/F=1 mm, K% 5 [F=
256x256; T, INALT 51 B, H: 24 & TR=8. 2 ms, TE=
3.8 ms, FA=8", 2 ${=256, /K Z =1. 0 mmx1. 0 mmX
1. 0 mm,FOV=256 mmx256 mm,Z/E=1 mm, EUZHi4=
256x256; T, MU [ VK 52 7 51) (T,~fluid attenuated
inversion re(zovery,Tz—FLAIR) , H:Z%0E TR=4 500 ms,
TE=348 ms, FA=90" , JZ % =288, {& & =0. 95 mmx
0.95 mmx0. 95 mm, FOV=288 mmx288 mm, )= J& =
0. 95 mm, [EHEH4=272%272,

1.5 B WiAbEE  AHE ST R O A YR A
J%2 (UK Biobank ) (1 ixi 5245 A0 SRR 52 45 F I 5214
8 b5, A FE X B K B (gray matter, GM) 4F fiE A
WMHV 1T A G A T Ak 30 R A 485 25 fol i
Ab L E MR IE MR E . AL S fiH FSL
FAST #4741 4043 %1, FSL FIRST #E 17 J¢ it T @45t
Freesurfer ¥ 17 il 43 %1 A1 57 JiT 2 1 Al 7. & F
Schaeferd00 i 43 X AR AR 2, 7644 iz 5t 3 1 5% 7] $2
TS il DX 18 GMAARFR | 5 3% 18 FH (surface area,SA) |
Jz 5 B B (cortical thickness, CT) . /5 37 i & (gauss-
ian curvature , GC) FI°F-34 il 2% (mean curvature, MC)5
OE A SRE, T RZ253 52 . WMHV i il 5
i 555 432887 (Brain Intensity AbNormality Classi-
fication Algorithm, BIANCA) 454 T, FI T,-FLAIR K%
e

1.6 MSHELEMA N THHEMSEREL, A
W SRt 5 AT A REE AT 2 (A 4L, BT XS
i DX 14 Bz JR 3 AH 56 2R B . i ] ComBat B A4S 1E
il FORNE , [R) R RE A % P A R P A A O
Brie T ZRAE MSEE R W BR B, AR5 1 S b
A MS (285, £ BR 2050 R AT R R 10% THR AR 5%
Wi o AT el i A D7 AR 45 0 4 42 2 ) AR e i
BRI Ay o Ho BB «=0. 5 Fli=0, LIRS e A28
[] r s A A SR e R S T RS [
Z (BB BE 0 ] He ot AT 59T i A T XS 5% (Pro-
crustes ) J7 V5K BRI AR BE HEAT X 55, BEXT
BEABEBE LAY ARF ST 34 A R da b , L4 i
R B Y TR R BE AR S

1.7 Db iR s 0 Hb iR S RS B BT 3R 1A~
7 B Y e PR . AR SR A8 Dijkstra 5%
TEAAR I Bty v ] e 5t b 3380 i A R Joa 4 IX 22 [] Y
I b B 20 E ET SO 2 BR P A 0 R S R AT
BAL, 2F TR IR) P D0 ke P T A I o, R 5 P A
BRI R S B B E AT AN . B AEESE I
SO0 b B R, B B A AT
MR B

1.8 Giitw ik AU AR A A Bods 26
AU 38 235 FH 7 28 50 BT R PR 56 SR X — Mt e Rk R AT
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YE RS A . G656 B K SN
P<0.05. FERREE AT AW S48 5 25 50 B 7 i
Tk Do 4% J2 T R s J2 T B4 B %) 2 ) 2 S e L I
PEAT 45 1R K PR (false discovery rate, FDR) £ & [ #¢
KIE o FLIEJE B P<0. 05 B 2 22 5 AT et 2
TS N I T 2 RN A 2 B A ¢ K
AT IS T o AN G 25 43 b 5 o DN
PR BT RURE AT AL IA) PO ] P 4 i AR 8 P ) 52
HEFMR,

AR SE T304 LB 13 5 0 e B 1 3 22 (] Y
AN o F5 S8 B & B oy s [R] 2 AH B OCIR Iy, A7 78
25 [A) A OGN o« A5 i ENIGMA T B AR 31T
B2 IR 43 HT AT 1T 000 Y25 [8] F HEM (spin test)
FABIE 25 8] H A . Spin test 3 o R AL e 5% &
1 000 ¥R} J57 25 [] ) BR 18 5% A B — A OB 1 &
G3Aii o Spin & I J5 1Y PAE &8 11 5 FL LAY AR OC &R
HUAE H 253 A A T AR AR O R 38 rh BT ik g 67
R 1
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R T REME 56 IRIE AR Z B X R A5
T X BA 5 WMHV | LIRS AR AN S RE 2
() P8 D A DG 2R 880, TR AT 1 31 P A2 2805 A IR A
s, HeAh, 3 5 PROCESS T B Ak /r
3R, LAPEAS MS 8 B 7E I A8 A% WMHV 502
REZ )2 75 B Hp AR 03

2 & B

2.1 — BRI L R HE
AERR 5, 3 20 IR 25 S B EA i L (P<0. 001) o
MR R AR, 0 2R G #E L. 5 HC
ZHAH H , WMH-NC 2H }2 WMH-CI 41 ) WMHV B & 7}
& (F=16.658, P<0.001) ., WMH-CI 41 5 HC 41 &
WMH-NC £ 7E p-tau,, (F=8. 532, P<0.001) . MMSE ( F=
46. 164, P<0.001) .MOCA ( F=153. 541, P<0. 001) .15 5
iC 12 (F=58.111, P<0.001) . {5 & 4b BH 3 BF (F=
26.691, P<0.001) .15 75 P fig (F=38. 641, P<0.001) .
AT I fE (F=31. 121, P<0.001) 10 25 [d) ¥y fig (F=
41.652, P<0.001) J7 1l 22 F B H S it %= B X
(WLFE1).

xR —RARBAEE LR

Gt HC(n=141) WMH-NC(n=66) WMH-CI(n=134) giita PE
AR (e, %) 64. 468+6. 904 70. 348+8. 448 70. 216+7. 899 F=23.914 <0. 001"
ZHEFR
(s ) 12. 801x4. 253 11. 4394, 651 10. 418+4. 068 F=10. 804 <0. 001
PR F %) 61/80 31/35 48/86 X=2.755 0.252
WMHYV (%5, ml) 3.724+4. 871 11.575+11. 352 10. 263+9. 496 F=16. 658 <0.001™"
AB,, (s, pg/ml) 6.995+1. 832 7.089+2. 107 7.250+1. 996 F=0. 335 0.715
p-tau,,, (s, pg/ml) 1.758+0. 718 1.959+1. 016 2.489 +1. 680 F=8.532 <0. 001"
MMSE 353 (s ) 28.752+1. 374 28.212+1. 622 24.739+4, 447 F=46. 164 <0.001™"
MoCA P43 (x£s) 26. 156+2. 548 25.742+3. 130 18. 687+4. 761 F=153. 541 <0.001™"
T S ie 2 IIhE (x+s) 0. 465+0. 709 0.230+0. 710 -0. 603+0. 704 F=58.111 <0. 001"
15 DAL I () 0. 394=+0. 754 0. 128+0. 675 —0. 478+0. 830 F=26. 691 <0.001™"
HH e (xes) 0.399+0. 716 0.203+0. 841 -0. 5200. 689 F=38. 641 <0. 001"
PATHIRE (x£5) 0. 344+0. 697 0. 161+0. 654 -0. 44120. 640 F=31.121 <0. 001"
2 [ g (s 0.353+0. 585 0.311+0. 559 —0. 525+0. 894 F=41. 652 <0.001™

T+ 3R IR P<0. 0015 HC, g FEXT IR 4L s WMH-NC, 5 F15 55 155 AR DA 1R % 41 s WMH-CT, I3 15 155 PR AR B 40 s WME WV, i 15T =
{55 R MMSE,, 1 5 K5 pIUIR A KA B 3% s MoC A, SERRRIZR Il 35

2.2 MSHEEMZSREIEA HT Schaeferd00 fik
X ASEHR , ASBIFSE DA T, Z5 S HEE 5 ST ASRHIE (GM {4
FUSA .CT.GC MC) A MSHREE . Horp o — R R fif Rt
BRLY R 429 , 5 — IR PSR RER LN 30%, S TRIPI
FER BRI R R R AR G Sl F 2P T4
— R R (WL 1) BREERTIAL T SR 2 — R
125 TS 32 ZE RN 12 Sl R K ST i, B e

JEASE A R b e ) 5 B R R ) 2 (AR R R
JESEIE Bl R SRS AUE R o I R TR s (DL 2)24,
AWFFEANT T H N R EEFR AR LR ] Fe A, 255
B — R R R R B AR S AR A R 25 S e
S5 R B BV R4 (]G i 3 24 5 (FUJE: WMH-
CIZH5 HC 4 K WMH-NC 2H {8 BEAS AT Gt
X(F=3.350,P=0. 036), H WMH-CIZH {2 ST o
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~17.004 4
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2H s WMH-NC, i A 5 = {5 5 F B E 3 41 s WMH-CL il 1 B s 1R 5
PN R

WMH-CI WMH-NC HC

w

HC

WMH-CI WMH-NC

P2 A2 L T A

2.3 MK FEREEAEML  FEMLKT L
— BRI A W e AL R Y TJC B B G it 22 55 58 — b
FETE i 2% M 4% 1 21 1) 22 S5 A S22 L(P=0. 024,
K@it FDRAZIE) . 5 HC4AH I, WMH-CI 20 i1 2%
R 265 Py Ao {1 2 AR AT

2.4 WAUKCPEREAR L R UK Bl
FH 5 225701 0 ) B 5 — o B R 38 B 3 3 4 v
400 >l XA 46 BE AR, 45 R R 28— B 21 Ik
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DL X 3 (region of interest, ROI) 25 A & L S it
B2 5 M EA 271 ROLZ R A G124
BRI, M2 FDREIEFHARE,

BB 25 X 7 R AR TR S
ZAMIX . FIE R BN, 5 HC 4LM H, WMH-NC
ZHAE TR A T AT R A 2 R A G R
S, WMH-CILZERTAR I T ALt b g fg [m] 5 i
XGRS, 5 WMH-NCAAH L, WMH-CI
AP T BRI A2 A gt S

SRR 25 SN X Tz B A i T6
MAEZ AN . HE— R E TR, 5 HC 44
b, WMH-NC 2 78 L4 [ AMUHERS B2 5 To 7 25
52 [a] I (] 45 22 A GE i 8 L, WMH-CT 41 76 Ak
LR/ BT e S Gl I R = 1 S R = P S
T L, 5 WMH-NC 1A EE , WMH-CTZH#ERE M-
BT AN AN R T G R = S oy =

2.5 MSHESMMERMLR AFRHER
N Hb PR B R AL ) 25 5 S5 SR R 5 HC A L,
W MH-CTALAE 2 [RURTETS [a] f ) s i 5 i
i FRAK (P<0. 05, K1t FDRAGIE) . dE—%F MS
ofs 55 0 b2 8 AR T A DGR AT L 5 — o S5 b
B EE IO A . 7R =4 5 TR S b
BT B AUHE(HC  r=—0. 472, P, ,<0. 001; WMH-
NC: r=-0. 466, P,,<0.001; WMH-CI: r=-0. 462,
P,,<0.001)(VLEI3),

2.6 MSHHESIMIKIBIRMCHR AR
MS 5 B 55 1 R 48 Bm 47 AH & 43 A, [R) e 42 1 41
1% PERIREE AERR . 5B EEAR DG T A R R
2 [ T ae -5 22 M v g J5 [ 22 E [a] %50+ [m] A
A o J5 0] Bz A B 2 SR G (Pryp<0. 05) o AB,
Hl p-tau,g, 572 (0 B2 o X I 8 5 M 06, B v
A BRI 4 R 58 (P<0. 05, Kl id FDR A IE) o
WMHYV 5 %850 TR 107 8] 55 B 5T A7 7E i 25 A ¢
PE(Pre<0. 05) o 55 BB ARG BT SR o , 2
() ) i 5 2 00 452 k- R0 e A0 B R 284 ) ] g o 2 1 AH
K, 5 A v sk 55 ] R A A L TR R SR R A 67 A
K (Ppp<0.05) o AR, Fl p-tau,, 5 5 %M | TH 45
B FRAEAE 58 2 A M (P<0. 05, R i FDR AL IE ) .
WMHV 5 Hnt To0t 5545 Rz BT A7 7 3500 OGPk
(Py<0.05) o #E—2 0y 2 A4 R R 7E5 —
BRI B B Vis22_ LA Vis20_R A6 B /E WMHV
5z e Z R 2 AR . R, B B2 BT
Vis22_L il Vis20_R 6 B 7F p-tau,,, 525 M T g 2
] 2 A VER (LR 4) .



XS Bl B A

2025 4F 12 A ZF42 4 124

R2 FHERPZARNRAREZERIMEX (v5)

- 1081 -

i 1X. HC 4 (n=141) WMH-NC 4 (n=66) WMH-CI#H (n=134) PAE
SomMot28_L -3.680+9. 985 —6.491+9. 48 -2.629+10. 761 0. 046"
DorsAttn-Post5_L 2.513+15.397 -2.454+15. 018 1.595+15. 443 0. 044"
DorsAttn-Post6_L ~3.38624. 468 0.514+15. 336 -4.201+14. 817 0.034"
SalVentAttn-FrOperlIns7_L -8. 600+7. 823 —6. 245+8. 568 -9.356+7. 887 0. 049"
Limbic-OFC4_L -8.926+2. 595 -5.816+13. 195 -1.996+14. 928 0. 004"
Limbic-OFC5_L -6.51627. 331 —6. 068+6. 701 -4.316+7. 548 0. 046"
Cont-Par5_L —4.385+4. 391 -1.004=14. 894 —6.941+14. 328 0. 021"
Cont-PFCI3_L -15. 876+6. 517 ~14. 675+7. 568 ~14. 066+8. 795 0. 042"
Default-PFC2_L -10. 885+10. 713 ~14. 877+8. 421 ~11.917+10. 545 0. 020"
Default-pCunPCC2_L —5.798+12. 568 -1.092+13. 773 —1. 148+13. 146 0.041"
Default-pCunPCC9_L -9. 427+6. 908 -9.263+7. 181 —6. 157+7.779 0. 003"
Vis19_R 4.261+4.119 5. 044+3. 304 6.027+4. 12 0. 021"
Vis28_R 6. 862+9. 991 5.344+9. 423 3.936+11. 126 0. 007"
SomMot34_R 4.026%9. 74 2.842+9. 492 0.267+10. 399 0. 022"
SalVentAtin-FrOperIns5_R 17.749+2. 582 15. 376+8. 806 16.365+6. 719 0.012"
SalVentAttn-Med1_R 17. 856+2. 652 15. 83+6. 361 16.975+4. 451 0. 025"
Limbic-OFC3_R -3.641%7. 907 -3. 894+7. 498 -1.0168. 205 0. 022"
Cont-Par3_R —14.584+9. 712 -9.758+13. 129 -12.806+11. 19 0.021"
Cont-Temp2_R 8.401+13.078 9.525+10. 647 4.77+14. 449 0. 038"
Cont-PFCI3_R 5. 187+4. 664 5.347+4.274 6.679+4. 179 0. 023"
Cont-Cing2_R ~17.26%3. 601 -16. 589+3. 475 -16.011+4. 139 0. 042"

IR P<0. 05, %+ 3R P<0. 01; HC, f@EEXT IR L ; WMH-NC, 5 (5 5 455 5 U HNE 7 4L s WMH-CT i3 5 S 15 5 AR IA R R ASHA

®3 FIHEDZANRAREZERIMEX (vs)

Jigi X HC#(n=141) WMH-NC 41 (n=66) WMH-CI 4 (n=134) P&
Vis2_L 15. 692+7. 268 14. 456+7. 463 15. 18+6. 840 0. 048"
Vis9_L -15.203+4. 039 —14.772+4. 294 -13.917+4. 683 0. 020"
Visl1_L -16. 893+3. 261 -16. 139+2. 754 -16.383+3. 03 0. 045"
Visl5_L —6. 87+5. 328 ~7.081%5. 688 -5. 842+5. 566 0.036"
Visl8_L -8. 173+5. 805 —6. 425+6. 836 -5.728+6. 616 0.028"
Vis23_L 4.436+9. 995 7. 146+8. 622 5.425+10. 811 0.041"
SomMot31_L 6.12328.272 4.821+10. 8 3.341+11. 539 0.047
DorsAttn-Post15_L ~12.327£12.922 —11.125+12. 687 -12.533+11. 466 0.041"
DorsAttn-Post16_L -8.358+13. 471 -9. 142+12. 729 -10. 626+11. 355 0.025"
SalVentAttn-FrOperlns1_L 16. 633+2. 642 17. 066+2. 473 17. 419+2. 06 0.014"
Limbic-TempPole5_L 10.012+11. 6 7.718+13.243 6.283+14. 889 0.035"
Limbic-TempPole8_L 12. 695+6. 451 11.735+8. 405 10. 508+9. 449 0. 039"
Cont-Par4_L —1.651+12. 681 ~1. 066+14. 004 -2.535+12. 626 0. 049"
Default-pCunPCC7_L —12. 449+9. 571 —14. 186+9. 252 ~11.588+10. 877 0.021"
Default-pCunPCC9_L -9.427+6. 908 -9.263+7. 181 -6.157+7.779 0.001™
Visl1_R -16.229+3. 592 -15.331+3.713 —15. 345+3. 459 0.014"
Visl3_R -8.516+5. 089 —7.986+5. 248 —6. 654+5. 389 0.016
Visl4_R -10. 009+12. 063 -9.102+11. 239 -8.92+10. 673 0. 023"
Vis20_R ~12.967+5. 326 —12.245+6. 291 -10. 604+7. 125 0. 029"
SomMot26_R 16.91623. 938 16. 362+5. 551 16.762+5. 47 0.033"
SomMot36_R —0.762+9. 432 -0.202+8. 951 -2.681+10. 621 0.033"
Limbic-OFC2_R —8.555+10. 749 -9.371+10. 874 -10. 023+9. 972 0. 040"
Limbic-TempPole7_R 13.704+7. 125 13.44549. 16 11.967+10. 83 0.017°
Cont-PFCv1_R 5.927+8. 097 3.868+11.236 3.73£10. 24 0.019"
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