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Application of artificial intelligence in vascular ultrasound: Current status and advances LUO Jiabao, ZHANG Feng.
(Department of Ultrasound , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou 510655 , China )

Abstract: Artificial intelligence (Al) technologies, especially machine learning algorithms, have achieved remark-
able advances in medical image analysis in recent years. As a noninvasive, real-time, and cost-effective imaging modal-
ity, vascular ultrasound is one of the most active areas for the application of Al technologies in medicine. This article re-
views the latest research advances in the application of Al in vascular ultrasound image recognition, automatic segmenta-
tion, diagnostic assistance, and risk prediction in 2021—2025, covering the aspects of transcranial Doppler, carotid ar-
tery, abdominal aortic aneurysms, aortic dissection, peripheral artery disease, arteriovenous fistula, venous thrombosis,

and the inferior vena cava. This article highlights the key technological innovations, clinical value, and research chal-
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lenges of Al within these areas.
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501 5 ik 75 £ 1% 4k (carotid atherosclerosis, CAS)
HWC R O 1L B AR (cardiovascular disease, CVD)
(R O A 5, 1T 22 305 A e 75 A 00 50 8 ok Ay o s JE g
(intima-media thickness, IMT) 42 $| W1 CAS Jp5 28 £ &
AR EE BRI L . IR O T 2R E
SRR F S8l Bk IMT K BES () A 85y #1550 25
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PN —BIF5E AT AR T N T 28 R 2% (R T YOLOv4 22
¥) % T “Be Easy to Use” (BETU) & 4", ] 76 #4
TR SO BB, HZ R GE AT TE 56 2% 254
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[t 3458 8 75 (contrast-enhanced ultrasound, CEUS) [



PSRRI 2025 4F 11 A 424 S 11

YERT, ¥ CEUS 5 N T BEARSS & , 57 DL-DCCP 5
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5 EEEEEREKE
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tOJF I PR 59 3E T ML A A\ W7 2 8 75 (robotic tomo-
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RURBUAL S, HAe ik 4E B AUC K 0. 7735, B 2548
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IRz h O 52 1 HH B0 57 AN VR G TR) R ey 7243 )
FHAB P SIS AT i — PR3, sl U AR s &
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