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人工智能在血管超声中的应用现状及进展

罗嘉宝 1，2， 张 峰 1，2

摘 要： 人工智能（ AI）技术，特别是机器学习（ML）算法，近年来在医学图像分析领域取得了显著进展。血

管超声作为一种无创、实时、经济的检查方式，是人工智能在医学应用中最活跃的方向之一。本文对 2021—2025 年

AI 在血管超声图像识别、自动分割、辅助诊断及风险预测等方面的最新研究进展进行综述，涵盖经颅多普勒超声、

颈动脉、腹主动脉瘤、主动脉夹层、外周动脉疾病、透析通路动静脉瘘、静脉血栓及下腔静脉等内容，分析其技术创

新、临床价值与研究挑战。
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Application of artificial intelligence in vascular ultrasound： Current status and advances LUO Jiabao，ZHANG Feng.  
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Abstract： Artificial intelligence （AI） technologies， especially machine learning algorithms， have achieved remark⁃
able advances in medical image analysis in recent years.  As a noninvasive， real-time， and cost-effective imaging modal⁃
ity， vascular ultrasound is one of the most active areas for the application of AI technologies in medicine.  This article re⁃
views the latest research advances in the application of AI in vascular ultrasound image recognition， automatic segmenta⁃
tion， diagnostic assistance， and risk prediction in 2021—2025， covering the aspects of transcranial Doppler， carotid ar⁃
tery， abdominal aortic aneurysms， aortic dissection， peripheral artery disease， arteriovenous fistula， venous thrombosis， 
and the inferior vena cava.  This article highlights the key technological innovations， clinical value， and research chal⁃
lenges of AI within these areas.
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随着全球人口老龄化进程加速，吸烟、缺乏运动
等不良生活方式的普遍，越来越多个体出现高血压、
血脂异常、糖尿病等代谢性疾病，使得血管疾病（包
括心血管疾病、周围动脉疾病、脑卒中等）患病率和
疾病负担持续升高。超声作为血管评估的一线工
具，具有无创、安全、准确且经济等优势，从二维超声
到多普勒超声、三维成像，再到腔内超声及功能性测
量，其诊断深度与广度正不断提升。但其结果高度
依赖操作者经验与主观判断，易受声阻抗差异和伪
影 干 扰 影 响 。 近 年 来 ，人 工 智 能（artificial intelli⁃
gence，AI）技术在医学影像领域取得了显著进展，其
中 以 机 器 学 习（machine learning，ML）和 深 度 学 习

（deep learning，DL）为核心的算法，凭借其强大的数
据挖掘与特征学习能力，为超声图像的自动化分析
提供了全新的解决方案。ML 通过监督、无监督和半
监督学习方式，从大量标注或未标注的影像数据中
提取特征并进行预测；DL 则利用多层人工神经网
络，能够在无需手动设计特征提取器的前提下，自动
学习分类或分割所需的图像特征，这两者共同推动
了 AI 在医学图像处理中的快速落地与优化［1，2］。本
文综述了 AI 在血管超声方面的最新研究进展，涵盖
经颅多普勒超声、颈动脉、腹主动脉瘤、主动脉夹层、
外周动脉疾病、透析通路动静脉瘘、静脉血栓及下腔
静脉等方面。

1　经颅多普勒超声

近年来，人工智能在经颅多普勒超声（transcra⁃
nial Doppler，TCD）中的应用迅速发展，涵盖了超快

多普勒成像、血管血流异常检测、机器人辅助监测与

梗死风险预测等多个关键领域。

TCD 需穿透颅骨薄弱部位（如经颞窗、眼窗、枕

窗）检测颅内血管中红细胞的运动速度和方向［3］，其

成像质量常受颅骨和软组织之间显著的声阻抗差的

限制。为提升 TCD 图像的质量和准确性，将基于深

度学习的颅骨声速建模与射线理论相结合，提出了

一种像差校正方法［4］，实现经颅平面波成像和超快

多普勒成像，降低了轴向及侧向定位偏差、提高信噪

比和多普勒成像的准确性。

在动脉狭窄检测方面，基于卷积神经网络（con⁃
volutional neural network，CNN）建立对于大脑中动脉

狭窄的 TCD 分类模型［5］，在测试集上的敏感度、特异

度和 AUC 分别为 0. 84、0. 86 和 0. 80，与手动测量相
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当。另一项研究开发并验证了一种基于多普勒超声

测量的血流动力学特征对颅外脑血管（包括颈总动

脉、颈内动脉、颈外动脉以及椎动脉 V2 段）及颅内脑

血管（包括大脑前动脉、中动脉、后动脉、椎动脉 V4
段和基底动脉）狭窄程度进行分类的机器学习模

型［6］，并能自动生成超声报告。在台湾一家教学医

院收集的 2020 年 6 月所有透析及常规超声病例数据

中，随机森林模型在颅外脑血管及颅内脑血管报告

中的狭窄分类准确率分别介于 0. 85~1. 00 和 0. 67~
0. 86，优于传统 Logistic 回归模型。表明了经颅多普

勒超声联合人工智能有望提高动脉狭窄筛查效率。

大脑的正常运转需要血液的持续稳定供应，而

TCD 可以对大脑主要动脉的血流进行连续监测，并

计 算 得 出 脑 血 流 速 度（cerebral blood flow velocity， 
CBFV）。因此 CBFV 的变化一定程度上可以提示神

经 系 统 的 病 变 。 一 种 基 于 自 组 织 映 射 神 经 网 络

（Self-ONN）的深度学习模型 Self-ResAttentioNet18 模

型［7］，可以通过监测大脑中动脉血流波形来区分神

经危重症患者与无脑部疾病的健康人。虽然该模型

仅使用了 6 名健康对照者和 12 名神经危重症患者的

大 脑 中 动 脉 血 流 波 形 进 行 训 练 ，但 最 终 实 现 了

96. 05% 的分类准确率，AUC 达 0. 99，展现了使用人

工智能进行实时神经疾病筛查的可能性。此外一项

研究利用 CBFV、动脉血压、心电图构建用于非侵入

性颅内压（non-invasive intracranial pressure， nICP）估

算的域对抗神经网络（DANN）模型［8］。其中值绝对误

差（mean absolute error， MAE）为（3. 88±3. 26）mmHg，

比传统支持向量回归（SVR）模型降低了 26. 7%，提

升了 nICP 估算的精度，也为 TCD 与其他生理信号融

合分析提供了思路。

机器人辅助 TCD 监测则将 AI+TCD 技术推向临

床实用层面。一项 Padua-Linz 双中心研究验证了机

器人辅助 TCD 的 NovaGuide 自动化系统在大脑中动

脉监测中的安全性与可行性［9］，其信号质量与专业

超声医师手动监测无显著差异。另一研究团队评估

了 NovaGuide 系统在蛛网膜下腔出血患者中的安全

性与性能［10］，当采用该系统测得的大脑中动脉最大

血流速度≥120 cm/s 为血管痉挛的阈值时，与 CT 血

管造影（computed tomography angiography，CTA）诊断

的血管痉挛结果相比较，Cohen’s Kappa=0. 74，表明

两者高度一致，验证了 NovaGuide 系统在神经重症监

护中血管痉挛监测的诊断价值。而后一项使用了配

备 AI 的 NovaGuide 系统进行实时脑栓塞监测的初步

研究［11］，结果显示该系统能够高敏感性地捕捉血流

中栓子经过的信号，并在无明显不良事件的情况下

完成监测。首次展现了 AI+TCD 应用于复杂手术神

经监护的可行性。

2　颈动脉

颈动脉粥样硬化（carotid atherosclerosis， CAS）
常被视为心血管疾病（cardiovascular disease， CVD）

的预警信号，而多普勒超声检测颈动脉内中膜厚度

（intima-media thickness， IMT）是判断 CAS 病变程度

的可靠且便利的方法。近年来已构建了多个深度学

习模型用于颈动脉 IMT 及斑块的自动分割与分类。

在目前报道的各种深度学习算法中，卷积神经网络

（CNN）和残差神经网络（ResNet）架构在图像特征分

类方面表现尤为出色［12］。并有研究表明混合深度学

习模型在斑块分割与面积测量中的表现较独立模型

好［13］。一项融合了双线性 CNN 与 ResNet 的深度学

习架构，即 BCNN-ResNet 模型［14］，可自动识别颈动脉

超声静态图像中的斑块。其在内、外部验证中 AUC
均 优 于 ResNet-34 模 型 。 另 有 一 种 新 型 CANet 模

型［15］，也可用于自动分割超声静态图像上颈动脉

IMT 及斑块，并能自动计算血管狭窄程度。在内、外

部验证集上均展现了良好的性能，并在计算血管狭

窄程度方面与经验丰富的超声医师具有较高的一致

性。除了对于静态图像的分析，近年来也有一些研

究团队关注超声视频的运用，提出了用于颈动脉超

声 视 频 中 多 斑 块 追 踪 和 分 割 的 全 自 动 系 统

（AMPTS）［16］，AMPTS 在 Dice 系数上达到了 0. 83，高

于 MAST、Track R-CNN、VSD 等先前的模型，解决了

超声视频中图像质量差、斑块形态多变以及多目标

识别问题。此外基于超声横断面视频开发深度学习

模型 CaroNet⁃Dynamic［17］，也表现出不错的性能。国

内一研究团队基于人工神经网络（采用 YOLOv4 架

构）开发了“Be Easy to Use”（BETU）系统［18］，可在超

声视频中实时识别斑块，且该系统可在 5G 网络条件

下实现跨 1 023 km 提供 150 ms 级的远程诊断反馈。

目前认为，斑块进展是早期亚临床 CAS 发展成

急性缺血事件的关键中间环节［19］，不良心血管事件

的发生除了与斑块负荷相关，也与斑块的不稳定性

密切相关。易损斑块（不稳定性斑块）的破裂是不良

心血管事件发生的重要始动因素［20］，近年来有很多

研究团队专注于此，将人工智能与超声结合，开发评

估颈动脉斑块稳定性及斑块分类的模型［21，22］。一项

基于 transformer 的自动斑块分类模型整合了语义分

割和自动分类两个关键环节，相较之前仅基于 CNN
的单一分类模型有显著性能提升［23］。一研究团队创

新性提出利用“水母征”（jellyfish sign）这一斑块表面

回声特征，将 CNN 与循环神经网络（recurrent neural 
network， RNN）相结合，以进行斑块稳定性分类［24］。

对于临床难以区分的易损斑块，准确率相较于传统

CNN 模型有所提升。此外，部分研究团队关注到对

比增强超声（contrast-enhanced ultrasound， CEUS）的

··1002



中风与神经疾病杂志 2025 年 11 月 第 42 卷  第 11 期

作用，将 CEUS 与人工智能相结合，建立 DL-DCCP 模

型［25］，利用斑块新生血管、造影剂流动及纤维帽运动

等动态特征，进行斑块脆弱性的自动检测与分类。

而后有一种双模态深度学习模型，即斑块边界和灌

注特征的视频分析模型（BP-Net）［26］，结合了 CEUS，

利用灌注特征提取斑块纤维帽内部动态信号，提高

对斑块纤维帽完整性的检测精度。首次实现了对于

斑块纤维帽完整性的自动、准确、非侵入式评估。

图像标准化是提高模型泛化能力的关键手段之

一，在上述多项研究中多未进行图像标准化的处理，

一定程度影响了人工智能模型的推广。对此，一项

研究中分别评估了 3 种超声图像预处理方案［27］，以

达成超声图像分辨率和增益的标准化，并结合斑点

噪声去除，提高了深度学习模型在所有颈动脉斑块

类型的自动分割性能。

近年来多项研究表明颈动脉斑块负荷的量化即

总斑块面积（total plaque area，TPA）和总斑块体积

（total plaque volume，TPV）在预测心血管事件的发生

中优于颈动脉 IMT［28，29］。人工智能辅助测量 TPA 和

TPV 也是近几年的热点。先有研究团队使用基于深

度学习的 U-Net 来训练自动分割模型并从纵向颈动

脉超声图像中测量 TPA［30］，而后 Ding 等［31］提出了一

种 基 于 图 像 配 准 的 自 我 监 督 学 习 方 法（Self-
Supervised Learning，SSL）和一种用于超声颈动脉斑

块图像分割的堆叠 U-Net 架构（SU-Net），实现从颈动

脉超声静态图像中测量 TPA。该模型应用于我国中

南医院独立数据集时，Dice 系数达 0. 903 以及与专

业超声医师手动测量的相关性为 0. 985，展现出优异

的性能和良好的泛化能力。

以往 TPV 主要依靠手动平面测量法进行测量计

算，需要耗费大量的时间及人力［32］。针对这一点，

Phair 等［33］研究了人工智能衍生的半自动软件测量

颈动脉斑块体积的可行性。结果显示，AI 半自动软

件测量的 TPV 与手动测量具有高度的一致性，且其

测量时间较手动测量平均缩短了 65%，表明 AI 技术

可显著提高斑块量化效率。此外，有部分研究团队

针对颈动脉血管壁体积的测量，开发基于 UNet++框

架的 3D 超声全自动测量血管壁体积的模型［34］。

不良心血管事件的风险预测也是近年来的热点

之一，有研究团队开发基于 CNN 的 AlexNet 迁移学

习模型［35］，可以从颈动脉彩色多普勒超声图像中自

动提取急性缺血性脑卒中患者的病变特征。之后该

团队提出了一种计算机辅助诊断系统来评估颈动脉

彩色多普勒超声中的多维特征［36］，包括血流形状、速

度、湍流状况以及血管走行等方面，从而识别急性缺

血性脑卒中患者。此外有团队综合利用颈动脉斑块

特征和影像学指标，采用多种深度学习架构（包括双

向循环网络和生成对抗网络等）对心血管不良事件

风险和患者生存进行预测与分层［37］。

3　主动脉瘤与主动脉夹层

近年来，关于主动脉瘤的超声联合 AI 研究主要

集中在腹主动脉瘤的辅助筛查、自动分割等方面。

Zhao 等［38］开发并评估了一种辅助筛查腹主动脉瘤的

深度学习算法，有望成为一种可靠的早期筛查工具。

在该算法的指导下非专业人士使用超声扫查的视频

质量与资深超声医师扫查质量相当，并且其预测腹

主动脉最大宽度的结果与医生的测量结果相比，平

均绝对误差仅为 2. 8 mm。当使用 2. 5 cm 作为诊断

腹主动脉瘤的临界阈值时，该模型检测腹主动脉瘤

的 AUC 为 0. 973。而后在此基础上进一步扩展了腹

主动脉瘤的人工智能研究，运用三维时间分辨超声

（3D+tUS）构建了基于 nnU-Net 架构的多模态分割模

型，可在动态超声图像中自动分割腹主动脉瘤腔和

动 脉 瘤 血 栓 ，实 现 精 确 的 体 积 测 量 和 形 态 学 评

估［39，40］，推动了腹主动脉瘤动态监测及评估破裂风

险分析的发展。

主动脉夹层是一种严重威胁生命健康的危重症

心血管疾病，其早期诊断对于及时做出准确的临床

决策和改善患者的预后至关重要［41］。升主动脉、主

动脉弓、胸主动脉和腹主动脉的多个节段可以在超

声图像中进行评估［42］，但其诊断极大地取决于超声

医师的专业能力和经验。对此，Lin 等［43］首次系统评

估了深度学习模型在急性腹主动脉夹层超声图像中

的诊断价值。研究采用 DenseNet-169 和 VGG-16 两

种 常 见 CNN 架 构 进 行 分 类 训 练 ，结 果 表 明 ，

DenseNet-169 在测试集上的敏感度高达 0. 95，AUC
为 0. 97；VGG-16 敏感度 0. 93，AUC 为 0. 95。二者均

优于非资深专业人员的综合表现，提供了人工智能

模型进行腹主动脉夹层快速筛查的可行性，有望在

紧急情况下为非专业人员提供可靠的诊断依据。

4　外周动脉疾病

踝肱指数是筛查外周动脉疾病（peripheral ar⁃
tery disease，PAD）常用的无创血管检查方法，可初步

判断肢体缺血程度。同时超声检查可以了解外周动

脉结构并能测量得出血流动力学相关数据，对 PAD
的早期筛查诊断和随访管理均具有重要意义。然

而，通过二维超声检查，很难在较短的时间范围内可

视化下肢血管，对此前些年已经开发了几种用于血

管成像的 3D 超声系统［44-46］，均展现出不错的性能，

但 3D 超声的推广主要受限于其价格和较繁琐的步

骤。有研究团队提出利用二维超声的“拉伸重建”技

术以改进外周动脉成像［47］。Mask-RCNN 算法分割

二维超声扫查的股动脉后，利用 CNN 算法估计平面

外运动，最终形成股动脉的拉伸重建图像，以便于直
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接观察动脉，快速测量直径和确定病灶大小。该技

术突破了传统二维超声在血管扫查中切面受限的瓶

颈，为血管超声评估提供了新的选择。

在 PAD 的筛查与诊断中，一项基于分层深度学

习架构的多层感知器和设计的分层神经网络（hier⁃
archical neural network，HNN）模型，对下肢动脉各分

段（主动脉-髂动脉、股动脉-腘动脉、腘动脉远端）狭

窄程度进行自动分类［48］。该模型预测正常结果的准

确率为 97. 0%，预测患病病例的准确率为 88. 8%。

有研究团队将深度学习模型应用于静息状态下胫后

动脉多普勒波形的自动分析，所构建的深度学习模

型在验证集中获得了 AUC 0. 94 的优秀表现［49］。为

PAD 的早期筛查提供了新的选择。随后该团队将此

模型扩展用于 5 年内主要不良心血管事件及主要不

良肢体事件的风险预测，能显著识别高风险人群：总

死亡的风险比为 2. 44，主要不良肢体事件的风险比

高达 11. 03［50］。后续在糖尿病患者亚组中也验证了

类似的预测性能［51］。另一团队选用踝动脉多普勒波

形建立糖尿病患者的 PAD 诊断模型，实现了 88% 的

整体诊断准确率、AUC 达到 0. 93［52］。除了单一的超

声数据分析外，融合多普勒超声检查、踝肱指数测量

及血液生化指标的随机森林模型在诊断 PAD 方面

（敏感度 89. 3%、特异度 91. 6%）优于仅使用传统踝

肱指数方法（敏感度 85. 1%、特异度 84. 5%）［53］。

对于锻炼和药物治疗反应不佳的 PAD 患者，手

术血运重建是治疗的重要手段，旁路术是重要的手

术方式之一，针对下肢动脉旁路移植物术后监测，一

研究团队利用术后至少 2 次超声检查的旁路峰值收

缩期血流速度，构建双向长短时记忆网络（BiLSTM）

模型［54］。该模型预测旁路闭塞事件 AUC 可达 0. 95，

显著超越了传统基于单次检查的预警能力。

5　透析通路动静脉瘘

近年来，人工智能在透析通路超声检查中的应

用已由自体动静脉瘘（arteriovenous fistulas， AVF）成

熟预测扩展至随访管理、远程监测和并发症预警。

在成熟预测方面，构建了一种基于机器学习的预测

模型，以术后 4~6 周超声测量的桡动脉及头静脉血

管直径、流量等变量为输入，对新建桡-头动静脉瘘

在 1 年内无干预达到成功使用进行风险预测［55］，所

构建的 LassoLogistic 回归模型的预测性能优于现行

KDOQI 和 UAB 标准。在延续对桡-头动静脉瘘 1 年

期通畅率预测研究的基础上，由团队研究扩展至

2. 5 年期的桡-头动静脉瘘一期和二期通畅率预测，

通过联合机器学习模型与 PREDICT-AVF 网络应用，

并结合术后 4~6 周超声测量构建的模型具有优秀的

预测性能［56］。

对于自体动静脉瘘的随访管理方面，研究者提

出 并 临 床 验 证 了 机 器 人 断 层 超 声（robotic tomo⁃
graphic ultrasound， RTU）联合人工智能分析系统管

理动静脉瘘的可行性，利用半自主的机器人探头获

取三维断层超声和多普勒数据，人工智能系统自动

分割瘘管结构、测量流速及血管壁参数，并实时分析

狭窄风险和成熟度指标［57］。与传统超声检查相比，

RTU+AI 系统测量误差低于 5%，平均扫描时间缩短

35%。

高流量动静脉瘘可能是血液透析患者心力衰竭

和死亡的可改变危险因素［58］，有研究团队利用机器

学习技术构建了针对高流量动静脉瘘的预测模型，

并系统评估了瘘管流量、既往心衰史及代谢性疾病

对心功能和生存预后的影响［59］。

6　静脉血栓疾病

人工智能联合超声检查在静脉血栓领域的创新

包括辅助诊断以及基于临床变量的风险预测等方

面。在辅助下肢深静脉血栓（deep vein thrombosis， 
DVT）诊断方面，有研究提出了一种基于深度学习的

图像质量分类方法，用于自动识别并提取适合诊断

腘静脉血栓的超声横断面静态图像［60］。该模型在便

携式超声中同样能取得不错的表现，为后续开发面

向非专业人群自助筛查静脉血栓奠定了基础。此外

有研究团队关注到加压超声在诊断静脉血栓的作

用，基于加压超声开发的 AutoDVT 系统［61］及 Think⁃
Sono Guidance 系统［62］，可以指导非专业人士进行静

脉加压扫查，从而诊断静脉血栓。而后有团队将

UNet 与 ResNet 相结合，构建了自动分割多普勒超声

视频中的血管壁，并基于静脉可压缩性评估完成深

静脉血栓诊断的深度学习模型［63］，该模型在多中心

数据集上达到超过 90% 的诊断准确率。此外一项面

向慢性肝硬化患者的门静脉血栓（portal vein throm⁃
bosis，PVT）诊断研究中，研究者构建了 SVM-Naïve 
Bayes-QDA 堆叠模型［64］，融合多项临床数据和门静

脉血流速度后其预测门静脉血栓的 AUC 超过 0. 90。

为完善机器人超声系统，进一步实现自动化加

压超声检查，研究团队针对 DVT 评估中超声探头压

迫力度的不一致问题，提出了一种基于核化运动基

元（kernelised movement primitives，KMP）的模仿学习

方法［65］，使机器人超声系统可以模仿超声医师的力

控制和超声图像质量，推动超声检查向全自动化

迈进。

关于静脉血栓的风险预测是近年来的研究热

点，研究团队基于人工智能算法，结合临床变量，如

D-二聚体、年龄、住院时间和既往静脉血栓栓塞病史

等相关危险因素，构建深静脉血栓风险预测模型，大

多都取得了不错的表现。例如针对肿瘤患者静脉血

栓的个体化风险评估开发的结合 D-二聚体的 LR 模
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型表现优异，其在测试集上 AUC 达 0. 773［66］，显著优

于传统 Khorana 评分（AUC 0. 642）。一项针对骨关

节 置 换 术 后 DVT 风 险 预 测 构 建 的 集 成 模 型（XG⁃
Boost、RF、SVM 和 LR 模 型 的 集 成）实 现 了 AUC 
0. 9206［67］，超 越 了 临 床 常 用 的 Caprini 评 分（AUC 
0. 5703）。 针 对 脑 卒 中 后 DVT 风 险 预 测 的 RF 模

型［68］，其性能也优于 Padua 评分。

7　下腔静脉

在危重症患者的血流动力学监测中，下腔静脉

（inferior vena cava， IVC）超声占据重要地位，可用于

评估循环血容量和预测液体反应性。目前已有成熟

的 IVC 自动测量技术并已应用于临床，如 Mindray 的

半自动 SmartIVC 和 GE 的 AutoIVC 等。后续研究团

队利用机器学习方法对包括 IVC 塌陷指数、心输出

量等在内的超声测量数据进行了综合建模，在预测严

重脓毒症或脓毒性休克患者的液体反应性方面，PLS
模型（AUC 0. 83）与被动抬腿实验（AUC 0. 77）表现相

当［69］。最近，Yurk等［70］开发的深度学习模型能够从快

速吸气时 IVC 超声扫查视频中自动评估右心房压力，

在 与 金 标 准 右 心 漂 浮 导 管 测 量 的 对 比 中 实 现 了

AUC 0. 85，并在外部数据集中表现出优良的泛化能

力，基于视频的自动化右心房压力评估有望为临床

提供更可靠的循环血容量状态的判断手段。

8　总结与展望

近年来人工智能在血管超声的研究不仅包括对

传统二维静态图像的定性分析，更是快速迈向多维

度定量分析、自动化、精细化，落地临床应用方向。

基于不同架构的深度学习模型在动脉狭窄、颈动脉

斑块、腹主动脉瘤、自体动静脉瘘、静脉血栓等血管

疾病的识别、分类及自动分割定量分析中的表现与

人工检查表现相当，甚至优于人工检查；多模态数据

融合技术进一步提升了超声成像的质量、病变检测

的敏感度和不良心血管事件风险预测的准确性；机

器人辅助超声和动态多普勒监测系统的建立更是朝

着全自动化超声迈出了一大步，在神经重症及脑卒

中风险评估、透析通路管理、深静脉血栓检查等方面

展现出敏捷高效的监测能力。但距真正进入临床应

用仍有相当一段路程，本综述中提到的大多数模型

构建都基于超声静态图像，但仅依靠单个截面的静

态图像可能会错过一些关键的动态变化，从而限制

模型的泛化能力。研究者们也注意到这一点，有不

少模型选择利用超声动态图像进行分析，但也存在

因运动伪影而出现定位不准确的问题。如何充分利

用超声实时分析这一优势，减少图像不规范、伪影等

影响是未来需要努力的方向。在算法层面，可通过

引入注意力机制［71］、对抗生成网络及自适应噪声滤

波［72］等策略，抑制运动伪影并提高动态图像稳定性。

目前的研究主要基于特定的数据集，且多存在样本

量较少的缺陷，缺少多中心、大样本量的研究，模型

的性能和泛化能力必须进一步增强以适应复杂的临

床病例，并且在不同医院和设备条件下，模型的稳定

性仍然是一个挑战。因此，未来的研究应着眼于推

动多中心、大样本量的数据平台建设，建立统一的图

像质量评估标准，开展前瞻性、多中心随机对照试

验，并将成熟的 AI 超声技术运用于临床实践，不断

更新及优化模型，以充分实现人工智能在医学诊断

中的潜力。总的来说，人工智能正通过标准化数据

预处理、高性能模型架构和自动化工作流的构建，推

动血管超声从经验驱动向数据驱动的转型，显著提

升诊断一致性与效率，有望为精准医疗和远程医疗

提供坚实技术支撑。
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