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【摘要】　牙发育异常及牙发育相关诊疗是口腔临床工作中的难点，涉及牙发育异常诊治、牙发育评估等多方

面，涵盖从疾病诊断到治疗方案制定等各环节，诊治难度大，需要医生具有扎实的理论基础和丰富的临床经

验。近年来，得益于丰富的口腔临床图像资源，人工智能中以卷积神经网络为代表的深度学习技术不断发

展，为口腔疾病诊疗提供了有利支持，显著提高了诊治效率。深度学习在牙发育异常及牙发育相关诊疗方面

具有多方面的应用，首先其可以识别影像片和口内照中的牙发育异常疾病，以辅助医生诊断。其次，深度学

习可以进行牙发育评估和牙萌出预测，为个性化治疗方案的制定提供参考。此外，其还能够识别牙根及根管

形态、定位疑难根管，帮助医生了解根管解剖，提高牙髓治疗成功率。尽管深度学习在牙发育异常及牙发育

相关诊疗方面具有重要应用价值，但整体研究仍处于初级阶段，存在无法进行疾病系统化诊治、多为单中心

研究等不足。未来应尽可能设计多中心研究，构建集疾病诊断、发育评估等为一体的深度学习模型，综合分

析多因素，进一步提高模型应用价值。
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【Abstract】 Dental developmental abnormalities and dental development-related diagnosis and treatment represents a 
critical and challenging area of clinical practice. This process spans multiple stages, from diagnosis to the creation of 
treatment plans, requiring substantial theoretical knowledge and rich clinical experience. In recent years, the develop‐
ment of artificial intelligence (AI), particularly deep learning technologies exemplified by convolutional neural networks, 
has been facilitated by the abundance of dental clinical image resources. Advancements in AI have provided substantial 
support for the diagnosis and treatment of oral diseases, significantly enhancing clinical efficiency. Deep learning has 
numerous applications in developmental abnormalities and dental development-related diagnosis and treatment. First, 
deep learning can assist in the identification of developmental abnormalities in radiographs and intraoral images, help‐
ing dentists make accurate diagnoses. Second, this technology can be used to assess dental development and predict 
tooth eruption, providing valuable reference for the formulation of personalized treatment plans. Furthermore, deep 
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learning can identify root and root canal morphology, as well as locate challenging root canals, thereby enhancing the 
dentists' understanding of root canal anatomy and improving the success rate of endodontic treatments. Despite its sig‐
nificant potential in these areas, research in this field remains in the early stage. There are several limitations in the lit‐
erature, including the inability to implement systematic disease diagnosis and treatment and a lack of multi-center stud‐
ies. Future research should aim to design multi-center studies and develop deep learning models that integrate disease 
diagnosis, developmental assessment, and other factors, conducting a comprehensive analysis of multiple variables to 
further enhance the practical value of these models.
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牙发育是胚胎早期发育过程中，上皮和间充

质组织通过各种信号通路相互作用的结果［1］，微观

层面器官发生的复杂性一定程度上决定了宏观层

面口腔表现的复杂性，不同个体间牙齿数目、牙冠

及根管形态、牙齿发育速度、萌出方向等都存在一

定差异，因此牙发育异常及牙发育相关诊疗难度

大，涵盖广，涉及牙发育异常诊治、牙发育评估、牙

根及根管形态评估、牙萌出预测等多方面，对于口

腔医生挑战较高。如何降低诊治难度，提高诊治

效率，避免医生临床水平差距引起的诊疗效果差

异，拉平诊疗基线，是当前临床中的重难点。

在大数据背景下，随着计算机算力不断提高，

机器学习、自然语言处理、语音识别等各类人工智

能技术迅速崛起。深度学习是人工智能的重要子

领域和技术之一，本质上是多层神经网络架构，主

要组成成分为人工神经元［2］。不同的神经网络架

构和算法设计构成了各种深度学习模型。卷积神

经网络（convolutional neural networks，CNNs）是深度

学习模型中一种具有代表性的神经网络模型，专

门用于处理网状数据（如图像），因而广泛应用于

分类、分割、检测等计算机视觉任务［3］。近年来，

得益于丰富的口腔临床资源，CNN 模型已经应用

于牙菌斑检测［4］、龋病诊断［5］、面型分析［6］等口腔

各个领域，具有速度快、自动化、精度高等优点，应

用前景广阔［7］。将深度学习与牙发育异常及牙发

育相关诊疗相结合，建立高效、精准的诊疗模式，

可以帮助口腔医生作出更加科学合理的临床决

策，推动口腔医疗的智能化发展。笔者对深度学

习在牙发育异常及牙发育相关诊疗中的研究现状

进行综述，以期为深度学习在该领域的深入发展

提供思路。

1　牙发育异常

牙发育异常是牙在发育过程中，受到遗传或

环境因素的影响，上皮和间充质作用紊乱引起的

一类疾病，包括数目异常、形态异常、结构异常、萌

出及脱落异常等［8-9］。牙发育异常疾病不仅会影响

美观和咀嚼功能，还可能引起错 畸形、邻牙牙根

吸收、诱发囊肿形成等严重并发症，因此对此类疾

病的诊治尤为重要［10-11］。
1.1　数目异常

牙齿数目异常主要分为数目不足与数目过多

两大类，病因不明，均可影响患者的口腔健康［12］。
数目不足包括个别牙或多数牙缺失、先天性无牙

症，数目过多包括额外牙和牙瘤。

目前，大部分研究集中于对全景片中多生牙

的检测，虽然不同研究使用模型存在差异，但都展

现出良好性能，准确率超过 90%，证明了当前 U-

Net、Detect-Net 等不同 CNN 模型对多生牙的影像特

征的强大分析学习能力［13-15］。尽管深度学习在多

生牙诊断方面的相关研究已较为成熟，但针对其

他数目异常疾病的研究却十分有限。在牙瘤诊断

上，仅有少量研究提出了识别牙瘤的 CNN 模型，虽

然结果显示准确率为 80%，但作者仅使用了 30 张

牙瘤图像进行模型训练，20 张进行模型测试，未来

仍需要更大数据集的相关研究评估模型的泛化性

和鲁棒性［16］。
此外，虽然许多研究表明深度学习可实现对

乳恒牙的精确分割、编号［17-19］，但纳入的数据集均

为无数目异常的全景片，无法同时实现编号和数

目异常的识别。国内学者首次提出了能同时进行

乳恒牙编号和检测多生牙及先天缺牙的深度学习

模型。研究人员收集了 800 张全景片按照 6：2：2
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分配至训练集、验证集和测试集对以 ResNet-50 为

骨干网络的模型进行训练、参数调整和性能测试，

并使用额外的 907 张图像作为外部测试集评估模

型泛化性和鲁棒性。结果显示，在内部和外部测

试集中，模型的敏感性、特异性、阳性预测值、阴性

预测值均达到 90% 以上，能够很好地进行数目异

常识别［20］。
1.2　形态异常

牙齿形态异常包括畸形中央尖、牙内陷、牛牙

症、双牙畸形等各类疾病。目前，针对此类疾病的

深度学习诊断研究较为缺乏，仅有少量研究涉及

畸形中央尖和牛牙症，这可能归因于其发病率相

对较低，难以收集足够的数据资料。

畸形中央尖是牙发育期间，内釉上皮和牙乳

头干细胞过度增殖和折叠所致，常表现为中央窝

处一突起牙尖，好发于亚洲人种［21-22］。Choi 等［23］

纳入 402 张根尖片构建了 6 个 CNN 模型用于畸形

中央尖诊断，结果表明 Resnet 模型性能最佳，曲线

下面积 （area under curve，AUC） 为 0.878，准确率为

80.5%，证明了深度学习应用于诊治该疾病的可行

性。鉴于根尖片常用于畸形中央尖患牙的进一步

检查，国内学者开发了基于全景片的畸形中央尖

检测模型，AUC 为 0.956，不仅可以检测已萌出的畸

形中央尖患牙，更重要的是其还能够识别牙胚中

的畸形中央尖，从而做到早期发现、早期干预，避

免畸形中央尖折断引起严重后果［24］。
牛牙症是一种少见的牙齿形态异常，主要特

征为髓腔增大、髓室垂直高度增加、牙根短小［25］。
Duman 等［26］利用 U-Net 对全景片中的牛牙症患牙

进行分割检测，发现该模型对牛牙症的诊断能力

已经接近专家水平，敏感性为 86.5%，精确度为

78.98%。虽然模型展现出不错的性能，但鉴于上

颌磨牙影像受到上颌窦等影响，难以分割，作者提

出应进一步对上下颌磨牙进行亚组分析，以明确

模型在上下颌牛牙症的检测中是否存在差异。

1.3　结构异常

牙齿结构异常包括牙釉质发育不全、牙本质

发育不全、氟牙症等，由于牙体硬组织的发育不

全，导致对牙髓的保护作用减弱，常引发牙齿敏感

甚至牙髓感染等。此外，前牙结构异常容易引起

美观和心理方面的问题［27］。因此，该类疾病的诊

治对于患者口腔健康具有重要意义。目前，对于

结构异常疾病的检测研究集中于牙釉质发育缺陷

型疾病 （developmental defects of enamel，DDE） 方

面，其诊断主要基于口腔医生的临床检查，因此口

内摄像照片便成为深度学习相关研究的重要数据

资源。

磨牙 -切牙釉质矿化不全（molar-incisor hypo‐
mineralization，MIH） 是指多因素引起的至少一颗

第一恒磨牙牙釉质矿化不全，常伴切牙受累，目前

正成为重要的全球公共卫生问题［28］。许多研究已

经成功构建出能识别口内照中 MIH 的检测模型，

Neumayr 等［29］和 Schönewolf 等［30］是将 MIH 与正常

牙齿进行区别，而 Felsch 等［31］和 Alevizakos 等［32］则
是对 MIH 和龋病、氟斑牙等进行鉴别诊断，其模型

的最佳准确率均达到 90% 以上。值得一提的是，

Neumayr 等［29］的研究是完全基于互联网中公开的

MIH 图像数据进行的模型训练、测试，说明当前深

度学习模型已经可以很好地捕获 MIH 的临床特

征，如釉质斑块、釉质崩解、非典型性修复体等。

遗传性牙釉质发育不全 （amelogenesis imper‐
fecta，AI） 和氟牙症分别是牙齿发育期间遗传因素

和获得性氟摄入过多而导致的牙釉质发育缺陷型

疾病［33］。国外学者构建了 ResNet34、ResNet50、
AlexNet、VGG16、DenseNet121 这五种模型用于氟牙

症、遗传性牙釉质发育不全、龋齿、MIH 的识别［32］。
结果显示，VGG16 模型虽然对氟牙症的检测准确

率最高，达 95% 以上，但对遗传性牙釉质发育不全

的检测准确率却仅约 55%。而对氟牙症检测准确

率最低的 AlexNet 模型却对遗传性牙釉质发育不全

有高达 90% 的检测准确率，这提示模型在区分氟

牙症和遗传性牙釉质发育不全方面具有一定限

制性。

1.4　萌出及脱落异常

该类疾病主要分为萌出过早、萌出过迟、异位

萌出以及脱落异常。牙齿萌出异常一般累及恒

牙，目前，深度学习相关研究热点集中于异位萌出

诊断。

牙齿异位萌出是指恒牙未在牙列的正常位置

萌出，常见于上颌第一恒磨牙及尖牙［34］。鉴于全

景片能够很好地评估牙齿萌出状况，且辐射剂量

低，因此异位萌出相关研究所使用的均为全景片

影像数据。

Zhu 等［35］首次提出基于 nnU-Net 的第一恒磨牙

异位萌出检测模型，其纳入 285 张全景片进行研

究，结果表明，模型识别第一恒磨牙的准确率达

99%，精确度达 84.5%，显著优于医生水平。 Liu
等［36］进一步指出在 CNN 模型辅助下，医生对于上
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颌第一恒磨牙异位萌出的诊断能力得到提高，能

够较好地提高临床工作效率。Yu 等［37］则构建了

针对全口牙异位萌出检测的 CNN 模型，结果显示

其能够精确分割及识别全部异位萌出患牙，证明

了深度学习在此类疾病诊治中的有效性。

2　牙发育评估

牙发育评估在儿童口腔临床工作中具有重要

作用，其能够为乳恒牙牙髓疾病治疗、错 畸形治

疗方案制定等提供参考［38］。此外，牙发育评估还

可帮助医生判断牙龄，更加准确地掌握儿童生长

发育趋势。目前，针对恒牙钙化阶段的分类方法

包括 Nolla 法、Demirjian 法、Willems 法、Moorrees 法

等，虽然各类方法存在一定差异，适用人群有所不

同，但本质上均是基于恒牙牙冠和牙根钙化程度

进行发育阶段分期［39-40］。
此前，大多数基于深度学习的牙发育评估研

究集中于单颗牙，尤其是第三磨牙［41-42］，尽管也有

少量研究针对左下颌前磨牙［43］，且这些研究已经

达到了一定的分类准确性，但仅对单颗牙或两颗

牙分类意义有限，极大限制了其临床应用。近年

来，众多学者开始尝试对全景片中的更多牙齿进

行发育评估，以期建立更加完善的分类模型。

Matthijs 等［44］和 Kurt 等［45］分别提出了使用改

良 Demirjian 法和 Demirjian 法对左下颌牙齿进行发

育评估的深度学习模型，结果均表明模型在切牙

分类任务中表现最差，在磨牙分类任务中表现最

好。在进一步对全牙列进行发育评估的相关研究

中，大部分研究基于 Demirjian 法［46-48］，仅一项研究

涉及 Moorrees 法和 Nolla 法［37］。虽然这些研究使用

不同模型，准确率、召回率、精确度等指标存在较

大差异，但均发现模型分类错误集中在相邻阶段，

说明现阶段模型难以准确捕捉相邻分类阶段的细

小特征差异。

此外，也有大量研究在牙发育评估分级的基

础上，利用深度学习进行牙龄估算以期更加精确

地掌握儿童及青少年所处的生长发育阶段。与牙

发育评估分级类似，先前研究大多使用第三磨

牙［49-50］进行牙龄估算，但现在越来越多的研究开始

纳入全景片中的所有牙齿进行牙龄估算［47，51］，力
求更加接近真实年龄。

Shi 等［47］利用深度学习自动计算牙龄与真实

年龄的差异，平均绝对误差为 0.72 岁，Kokomoto
等［51］研究的平均绝对误差更是缩小至 0.261 岁，十

分接近真实年龄。将深度学习这种端到端的方法

应用到牙龄估算中，可以直接输入图像并生成所

需输出，从而省去了传统方法中分割、特征提取、

回归等易出错的中间步骤，因此结果更加准确、重

复性好［52］。

3　牙根及根管发育

了解牙根及根管的数目与形态对于根管治疗

具有重要意义，准确掌握根管系统的解剖特征能

够有效指导临床操作，减少并发症的发生，是成功

治疗的前提［53］。
Hiraiwa 等［54］构建了能在全景片中识别下颌第

一磨牙远中双牙根的 CNN 模型，准确率达 86.9%。

国内学者利用 CNN 模型对下颌第二磨牙根管形态

进行分类，结果发现模型能够以高于医生的水平

将根尖片中的根管形态分为融合型、对称型和不

对称型［55］。Jeon 等［56］则首次提出能预测全景片中

下颌第二磨牙为 C 形根管的 CNN 模型，准确率为

95.1%，梯 度 加 权 类 激 活 映 射 （gradient-weighted 
class activation maps，Grad-CAM） 显示其是通过牙

根走形和根分叉形状区分 C 形与非 C 形根管。

Yang 等［57］研究则发现，当把根尖片和全景片结合

使用，且单独截取出牙根部分进行识别时，模型对

于 C 形根管的预测性能最佳，AUC 为 0.99。随后，

该团队又进行多中心研究进一步说明了模型具有

优异的泛化性能［58］。而对髓腔和根管进行 3D 分

割则可进一步帮助口腔医生熟悉侧支根管等复杂

的根管系统解剖结构［59］。由于 U-Net 模型具备优

异的分割性能，因此大部分研究均将采用该模型

的基本架构［60-61］。
Sherwood 等［62］提出了 3 种能在 CBCT 中对 C 形

根管分割和分类的深度学习模型，模型敏感性均

超过 70%，而 Santos-Junior 等［63］则不仅开发出了一

种能在 CBCT 中对单根牙进行根管系统分割的

CNN 模型，研究结果还证明了其分割精度和效率

都明显优于人工手动分割，能够生成更加精细的

3D 模型，证明了人工智能在三维数据的分析处理

上具有巨大潜力。

上颌磨牙多为三根牙，近颊根常会有 1 个以上

的根管，MB2 的遗漏是导致根管治疗失败的重要

原因［64-65］。由于 MB2 具有较大的解剖变异，难以

寻找，因此国外学者利用 CBCT 影像数据开发出了

能检测 MB2 的深度学习模型［66-67］。Albitar 等［66］使
用的是已接受根管治疗的牙齿影像，而 Duman
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等［67］使用的是未接受根管治疗的牙齿影像，虽然

数据类型存在差异，但模型均展现出来良好性能，

说明了深度学习在 MB2 识别方面的广阔临床应用

前景，能够帮助医生在 CBCT 图像中定位 MB2。

4　萌出预测

4.1 第三磨牙萌出预测

目前，牙齿萌出预测的人工智能相关研究主

要集中于第三磨牙，预测第三磨牙的萌出对于正

畸、拔牙治疗方案的制定等具有重大参考价值，并

促进临床决策精准化［68］。
大部分研究是通过构建深度学习模型测量第

三磨牙长轴与邻近第二磨牙长轴的夹角，来预测

第三磨牙是否阻生［69-70］。但考虑到第三磨牙的萌

出受到磨牙后间隙宽度、磨牙发育状态等多种因

素的影响［71］，仅使用长轴夹角的预测方法效果

有限。

Chopra 等［72］纳入了 771 例患者的两个不同时

间点共 1 542 张右下第三磨牙图像，通过纵向对比

分析了磨牙发育阶段、第三磨牙与第二磨牙的长

轴夹角、磨牙后间隙宽度等因素并构建 CNN 模型

预测萌出，结果发现，当使用长轴夹角与磨牙后间

隙宽度综合分析时，模型显示出最佳性能，敏感性

和特异性均超过 70%。

预测第三磨牙萌出对于第三磨牙的全周期健

康管理具有重要意义，人工智能的应用不仅可以

提高评估效率，还可辅助医师进行临床决策。虽

然当前研究已经初步证明了其可行性，但仍需进

一步研究综合萌出高度、发育状态等多种因素建

立更为全面的 CNN 模型。

4.2 尖牙萌出预测

尖牙是全口牙列中除第三磨牙外阻生率最高

的牙齿，其正常萌出对于口腔面部美观及建立健

康的咬合关系具有重要作用［73］。
虽然许多研究发现尖牙与侧切牙长轴夹角等

因素能够预测其萌出［74-75］，且已有研究使用监督式

机器学习的方法成功构建出了尖牙阻生预测模

型［76］，但目前尚无预测尖牙萌出的 CNN 模型，仅有

识别尖牙阻生的 CNN 模型以及诊断尖牙阻生造成

邻牙牙根吸收的 CNN 模型［77-78］。
当前对于尖牙阻生的人工智能研究有限，未

来需进一步加强人工智能在该疾病中的研究，以

帮助医生进行早期诊断尖牙阻生，从而早期干预，

降低治疗难度。

5　当前局限和未来展望

当前，深度学习在牙发育诊疗相关研究的局

限性及展望有以下几点：①在牙发育异常方面，研

究多集中于多生牙的识别，其他疾病相关研究十

分缺乏，这可能归因于疾病患病率低，难以获得足

够的数据资源。鉴于单中心研究数据的有限性，

未来应尽量设计多中心研究，既可解决数据缺乏

的问题，又可评估模型的泛化性及稳健性。②由

于部分疾病如牙釉质发育缺陷型疾病彼此之间、

牙釉质发育缺陷型疾病与龋病等存在相似的临床

和影像学表现，而当前研究大多是将正常图像与

疾病图像进行区分，导致模型可能难以对此类疾

病进行鉴别诊断，从而限制其临床应用。③当前

研究多是针对单一病种进行诊治，未来应形成更

加全面的智能化诊疗系统，例如将发育评估和发

育异常诊断相结合，进而可辅助医生制定更科学

的治疗方案。④遗传性牙釉质发育不全、MIH、先

天缺牙、萌出延迟等发育异常可能是某些遗传罕

见病如外胚层发育不全综合征、颅骨锁骨发育不

良的口腔表现，今后应考虑在对牙发育疾病诊治

的基础上，纳入全身因素等进行评估，从而帮助口

腔医生提高对遗传罕见病的诊治率。⑤在牙发育

评估上，国内外学者多基于 Demirjian 法建立深度

学习模型，然而由于该分类方法无法完全满足临

床需求，应加强对其他分类方法的相关研究以用

于不同的临床场景。⑥在牙根及根管发育方面，

当前研究均为单中心研究，因此研究结果的外推

性受到一定限制，此外大部分研究将含有高密度

充填物的影像数据排除在外，导致模型可能难以

对再治疗的根管进行识别。⑦当前研究大多仅基

于单一图像数据，今后应尝试构建多模态模型，如

将影像学和口内照联合应用或将时间序列数据、

文本数据与图像数据联合应用等，使诊断更加精

确，具有解释性和预测性［79］。

6　小 结

牙发育异常及牙发育相关诊疗是口腔临床工

作中十分具有挑战性，也是十分重要的一环，人工

智能尤其是深度学习的出现为提高临床工作效

率、降低诊治难度提供了很好的解决思路（图 1）。

虽然已有研究涉及该领域，但整体而言仍处于初

期阶段，需要更多高质量研究进一步阐明深度学

习模型应用于牙发育相关临床诊治的可行性，从

而推动临床诊疗的智能化发展。
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图 1　深度学习在牙发育异常及牙发育相关诊疗中的应用
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