

Knowledge, Attitude, and Practice Regarding Topical Corticosteroids among Filipino Patients with Psoriasis at a Tertiary Hospital: A Cross-sectional Study

Jonnie Rose Louise Romero Wee, Kara Melissa Torres Culala, Elizabeth Amelia V. Tiano

Department of Dermatology, Jose R. Reyes Memorial Medical Center, Manila, Philippines

Abstract

Background: Psoriasis is an increasingly prevalent chronic disease commonly treated with topical corticosteroids (TCS), although these agents are often misused. There is a need to explore the factors influencing nonadherence to TCS among patients with psoriasis in the Philippines. This study aimed to determine the knowledge, attitude, and practice (KAP) regarding TCS among Filipino patients with psoriasis.

Materials and Methods: A cross-sectional survey was conducted on 76 Filipino patients with psoriasis at a tertiary hospital using a constructed validated questionnaire.

Results: Patient scores clustered at the upper end of the distribution, indicating a generally good level of KAP regarding TCS. Increasing age was associated with a lower level of knowledge, while female respondents had a higher level of knowledge. Higher knowledge levels were associated with better patient attitude, and better patient attitude was associated with better practice.

Conclusion: Predictors of correct KAP regarding TCS are less likely influenced by sociodemographic and clinical factors; rather, these three domains significantly correlate with each other. Physicians can utilize these interrelationships by educating patients regarding their topical treatment to yield more positive attitudes regarding its efficacy and minimize their fear of side effects, which can motivate them to adhere to prescribed therapy.

Keywords: Attitude, knowledge, practice, psoriasis, topical steroids

Address for correspondence: Dr. Jonnie Rose Louise Romero Wee, Jose R. Reyes Memorial Medical Center, Rizal Avenue, Sta. Cruz, Manila, Philippines.
E-mail: jonniewmd@gmail.com

Submitted: 22-02-2025, **Revised:** 25-04-2025, **Accepted:** 13-05-2025, **Published:** 23-06-2025.

INTRODUCTION

Psoriasis is a chronic, immune-mediated, environmentally influenced, genetic skin disease that affects 125 million people globally.^[1] It is a disfiguring and disabling disease with no known cure and a great impact on the patients' quality of life,^[2] proving to cause great physical, emotional, and social burdens.^[3-5] The prevalence of this disease is

currently increasing worldwide.^[6] In the Philippines, the prevalence of psoriasis is estimated to be 1.7%.^[7]

Majority of patients have limited disease, which can be managed with topical therapy alone; however, topical therapy also plays an adjuvant role in the treatment of more severe disease in combination with other modalities

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Wee JR, Culala KM, Tiano EA. Knowledge, attitude, and practice regarding topical corticosteroids among Filipino patients with psoriasis at a tertiary hospital: A cross-sectional study. *J Philipp Dermatol Soc* 2025;34:3-10.

Access this article online	
Quick Response Code:	
Website:	https://journals.lww.com/jpds

of treatment.^[8] Topical corticosteroids (TCS), which reduce inflammation and decrease the growth rate of skin cells, are the most commonly prescribed topical therapies for psoriasis.^[9] However, because of the inconvenient and time-consuming nature of their use, patients' dissatisfaction of efficacy, and fear of their side effects, noncompliance to prescribed use of these medications in patients with psoriasis has been shown to go up to 40%.^[10]

A recent study conducted at a tertiary hospital in the Philippines provided information on how TCS are used by dermatology patients, in which there was 56.53% incidence of inappropriate topical steroid use, whether self-medicated or physician-prescribed.^[11] Clinicoepidemiologic factors were not significantly associated with inappropriate use.^[11] Relatives and advertisements as sources of information, online stores as a source of procurement, unawareness of Food and Drug Administration advisories against certain over-the-counter topical steroid and antifungal combinations, and of the adverse effects with prolonged use, and their own knowledge and medication labels as sources of instruction were the accessibility factors associated with inappropriate use.^[11] Other factors stated included the inability to have a proper consult due to the pandemic or work demands, suggestions from friends, pharmacists, and celebrities, and a previous experience with TCS.^[11]

To date, there have not been any studies conducted to explore the current knowledge, attitude, and practice (KAP) of Filipino patients with psoriasis regarding TCS. Thus, to fill this knowledge gap, this study determined the KAP regarding TCS among Filipino patients with psoriasis at a tertiary hospital through a cross-sectional survey, with the creation of a validated instrument. It also determined whether there were relationships between the patients' sociodemographic and clinical characteristics and their KAP and whether there were interrelationships between their KAP.

MATERIALS AND METHODS

This was a cross-sectional and descriptive study conducted at a tertiary hospital from January to June 2023 which utilized a self-administered questionnaire after approval from the Institutional Review Board.

This study included 76 Filipino patients with psoriasis who were at least 18 years old, had a history of TCS use (self-medicated or physician-prescribed), and could read and write in Filipino, employing a nonprobability purposive sampling method. A written informed consent was obtained before the initiation of the study.

This study used a three-part instrument to assess Filipino patients' KAP regarding TCS for the treatment of their psoriasis. All parts asked respondents to answer questions using a 5-point Likert scale. The knowledge and attitude section observed the following scale: 5 – strongly agree, 4 – agree, 3 – undecided, 2 – disagree, and 1 – strongly disagree. The practice section used the scale: 1 – never, 2 – rarely, 3 – sometimes, 4 – almost always, and 5 – always. With inputs from a psychometrician, biostatistician, and two board-certified dermatologists, the initial tool was created with a total of 46 items, with 18 reversely scored statements. Content validation was done by six separate board-certified fellows in dermatology. Each expert was asked to determine whether each item was relevant to the domains being assessed with the following Likert scale: 1-not relevant, 2-somewhat relevant, 3-relevant, and 4-very relevant. Items with Item-level Content Validity Index (I-CVI) indices ≥ 0.83 were retained. The revised tool – with 17 items under knowledge, 7 items under attitude, and 4 items under practice, with 1 reversely scored statement under knowledge – passed another round of content validity, after which it was translated into Filipino. Three certified linguists adept in healthcare terminology conducted forward translation, blind back-translation, and comparison of the original, translated, and back-translated versions, addressing ambiguities and discrepancies and achieving consensus with the primary author.

Reliability testing was then conducted on a parallel population of thirty bilingual patients who matched the inclusion criteria. Two rounds of pretesting were conducted on these patients: one for the English version and one for the translated Filipino version conducted 14 days apart. The results of these pretests were the basis for internal consistency or reliability testing and item analyses. I-CVI, Scale-Level CVI (S-CVI), and S-CVI/UA (S-CVI based on universal agreement) values were acceptable, and all Cronbach's alpha values were well above the 0.7 cutoff. With generally moderate to high coefficients, the 28-item tool was then proven to be valid and reliable.

Study participants received either a hard copy or an online link to the self-administered online survey. Data on patients' sociodemographic and clinical profiles were also gathered while anonymity was preserved. The collected data were then analyzed.

Psoriasis Philippines reported the estimated prevalence of psoriasis to be 1.7% in the Philippines.^[7] The researcher then estimated the minimum sample size required based on a maximum of 5% prevalence of psoriasis (the basis for sample size computation was $P = 0.05$). This maximum estimation accounted for unreported cases and was

expected to yield a higher sample size. The sample size was computed using the Sample Size Formula for Proportions and was determined to be 76, with a power of 80%.

Descriptive statistics such as mean, standard deviation (SD), median, interquartile range (Q1-Q3), and minimum and maximum values were reported to describe the distribution of patients in terms of different numerical variables under sociodemographic profile characteristics. The same were computed to report their knowledge, attitude, and practice scores.

Frequency distribution and percentage were used to present the data for the categorical variables with frequency counts, i.e. those indicated under the sociodemographic and clinical profile.

Two-sample *t*-test was used to determine if there was significant difference between two groups of respondents based on their profile characteristics, in terms of their knowledge, attitude, and practice mean scores provided the data satisfies the basic assumptions needed to perform *t*-test., e.g., normality. In cases of violations in the assumptions, Mann-Whitney test was used; medians this time were compared instead of means.

Pearson-r correlation was used to determine if there is a relationship between numerical profile variables, and the knowledge, attitude and practice scores. To test the correlation between ordinal variables (e.g., highest educational attainment and severity of psoriasis) and the knowledge, attitude, and practice scores, Spearman's rank correlation was used.

For all tests, confidence interval was set at 95%, comparison and association significant at <0.05 , all hypotheses tested at 0.05 level of significance.

Data were analyzed using IBM SPSS Statistics for Windows, Version 26.0 (IBM Corp., Armonk, NY, USA) after entry into Microsoft Excel.

RESULTS

Table 1 illustrates the sociodemographic and clinical characteristics of the respondents. They consisted of 76 patients with psoriasis, ages 18–72, with a mean of 40.49 years (SD = 15.53). The median monthly income was Php 8500, with a range from Php 0 to Php 80,000. Most were female (60.53%) and single (61.84%). Educational attainment varied, with 44.74% completing high school and 31.58% attaining a college degree. Urban residents made up 86.84% of the cohort.

Table 1: Sociodemographic and clinical characteristics of the respondents

Respondent's sociodemographic and clinical profile	n=76, n (%)
Age (years), average, mean (SD)	40.49 (15.53)
Minimum–maximum	18–72
Monthly income in PHP, median (IQR)	8500 (0–17,500)
Minimum–maximum	0–80,000
Sex	
Female	46 (60.53)
Male	30 (39.47)
Civil status	
Single	47 (61.84)
Married	29 (38.16)
Highest educational attainment	
Elementary	8 (10.53)
High School	34 (44.74)
College	24 (31.58)
Graduate/postgraduate	10 (13.16)
Residential address	
Urban	66 (86.84)
Rural	10 (13.16)
Severity of psoriasis	
Mild	38 (50.00)
Moderate	29 (38.16)
Severe	9 (11.84)
Comorbidities	
None	57 (75.00)
With	19 (25.00)
Cardiometabolic diseases	12
Psoriatic arthritis	7
Sources of information	
Dermatologist	76 (100.00)
Other sources	9 (11.84)
Family	1
Other healthcare professionals	5
Pharmacist	2
TV or radio	1

SD: Standard deviation, IQR: Interquartile range

Half of the respondents (50%) were diagnosed with mild psoriasis, 38.16% had moderate, and 11.84% had severe cases. Most patients (75%) reported no comorbidities, while 25% had conditions such as cardiometabolic diseases or psoriatic arthritis. Dermatologists were the primary source of information (100%), with few relying on other sources like family, pharmacists, or the media.

Most patients (85.53%) understood that TCS were the first line of therapy for psoriasis. Awareness of their mechanism of action, such as reducing redness (78.95%), thickness (84.21%), scaling (85.53%), and itching (85.53%), was high. More than half (55.26%) knew about hormonal abnormalities associated with prolonged use. Awareness of side effects such as skin thinning (68.42%) and stretch marks (46.05%) was varied. A significant number (56.58%) think that TCS usually cause allergic reactions [Table 2].

Patients generally held positive attitudes toward TCS, as shown in Table 3, with 88.16% believing in their efficacy and 78.95% relying on them for treatment. However, only

42.11% found them affordable, highlighting a potential barrier to adherence. Most patients (92.11%) understood the importance of following medical instructions and recognized the risks of improper use.

Most respondents reported correct practices regarding TCS, with 86.84% frequently using doctor-prescribed TCS and 92.11% adhering to application schedules. In addition, 80.26% utilized other prescribed medications and 82.89% attended scheduled follow-ups [Table 4].

KAP scores varied widely among respondents. The mean knowledge score was 63.36 (SD = 8.59), with higher scores indicating better understanding. Attitude and practice scores averaged 27.38 (SD = 4.63) and 17.32 (SD = 2.56), respectively. Most scores clustered at the upper end of the scale, indicating a generally desirable level of KAP.

Age showed a significant negative correlation with knowledge scores ($P = 0.049$), suggesting older patients had lower knowledge levels. Female respondents demonstrated

Table 2: Knowledge on topical corticosteroids for psoriasis

Items on knowledge	n=76		
	Disagree, n (%)	Undecided, n (%)	Agree, n (%)
1. The corticosteroids you apply on your skin is your first line of therapy when treating your psoriasis	4 (5.26)	7 (9.21)	65 (85.53)
2. Aside from psoriasis, topical steroids are also used to treat vitiligo	16 (21.05)	27 (35.53)	33 (43.42)
3. Aside from psoriasis, topical steroids are also used to treat eczema	9 (11.84)	15 (19.74)	52 (68.42)
4. Topical steroids decrease the redness of lesions on your skin	6 (7.89)	10 (13.16)	60 (78.95)
5. Topical steroids decrease the thickness of lesions on your skin	4 (5.26)	8 (10.53)	64 (84.21)
6. Topical steroids decrease the scaling of lesions on your skin	5 (6.58)	6 (7.89)	65 (85.53)
7. Topical steroids decrease the itching of lesions on your skin	5 (6.58)	6 (7.89)	65 (85.53)
8. Topical steroids come in different strengths, from very strong to very weak	5 (6.58)	8 (10.53)	63 (82.89)
9. If one immediately stops the use of topical steroids, lesions and other symptoms will reappear	7 (9.21)	15 (19.74)	54 (71.05)
10. Topical steroids usually cause an allergic reaction. (Reversely scored)	9 (11.84)	24 (31.58)	43 (56.58)
11. Prolonged use of steroids can cause hormonal abnormalities	6 (7.89)	28 (36.84)	42 (55.26)
12. Improper use of topical steroids may increase the risk for infection	4 (5.26)	23 (30.26)	49 (64.47)
13. Use of topical steroids may cause one's skin to lighten or darken	5 (6.58)	22 (28.95)	49 (64.47)
14. Topical steroids can cause thinning of the skin	8 (10.53)	16 (21.05)	52 (68.42)
15. Topical steroids can cause stretch marks	12 (15.79)	29 (38.16)	35 (46.05)
16. When using topical steroids, one may notice small blood vessels appearing near the skin surface	13 (17.11)	24 (31.58)	39 (51.32)
17. Topical steroids become less effective when used continuously for more than a month	8 (10.53)	26 (34.21)	42 (55.26)

Table 3: Attitude on topical corticosteroids for psoriasis

Items on attitude	n=76		
	Disagree, n (%)	Undecided, n (%)	Agree, n (%)
1. I believe that topical steroids are effective in treating my condition	4 (5.26)	5 (6.58)	67 (88.16)
2. I rely heavily on topical steroids to treat my condition	4 (5.26)	12 (15.79)	60 (78.95)
3. Topical steroids are safe to use	8 (10.53)	13 (17.11)	55 (72.37)
4. Topical steroids are affordable	29 (38.16)	15 (19.74)	32 (42.11)
5. It is easy for me to access the local pharmacy or an online pharmacy to buy prescribed topical steroids	21 (27.63)	17 (22.37)	38 (50.00)
6. I need to use topical steroids as instructed by the doctor to treat my psoriasis	4 (5.26)	2 (2.63)	70 (92.11)
7. Topical steroids can harm my skin if I use them incorrectly	2 (2.63)	4 (5.26)	70 (92.11)

Table 4: Practice on topical corticosteroids for psoriasis

Items on practice	n=76		
	Rarely to never, n (%)	Sometimes, n (%)	Frequent, n (%)
1. I use the topical steroid prescribed by my doctor	2 (2.63)	8 (10.53)	66 (86.84)
2. I stick to the application schedule prescribed by my doctor	3 (3.95)	3 (3.95)	70 (92.11)
3. Along with the prescribed topical steroid, I also use other medications as prescribed by my doctor	10 (13.16)	5 (6.58)	61 (80.26)
4. I keep my skin doctor's appointments like scheduled follow-up or additional consultations	3 (3.95)	10 (13.16)	63 (82.89)

Table 5: Relationship among knowledge, attitude, and practice

Variables	Computed values	P	Interpretation
Knowledge scores and attitude scores	0.552 ^a	<0.001	Significant relationship
Knowledge scores and practice scores	0.218 ^a	0.059	No significant relationship
Attitude scores and practice scores	0.373 ^a	0.001	Significant relationship

^aPearson's rho. Raw scores test for correlation, Value computed using Pearson correlation, Significant at <0.05

significantly better knowledge than males ($P = 0.031$). No significant relationships were observed between attitude or practice scores and sociodemographic factors such as education, income, or severity of psoriasis. Interrelationships among knowledge, attitude and practice scores are shown in Table 5. Knowledge and attitude scores were significantly correlated ($P < 0.001$; Pearson's Rho = 0.552), indicating that higher knowledge was associated with more positive attitudes. Attitude and practice scores also showed a positive correlation ($P = 0.001$; Pearson's Rho = 0.373), suggesting that better attitudes led to improved practices.

DISCUSSION

This survey determined the current KAP of Filipino patients with psoriasis regarding TCS, whether there were significant relationships between their sociodemographic and clinical profiles and their KAP, and whether there were significant interrelationships between these three domains.

There was a wide age range of the respondents, reflective of the fact that psoriasis can happen at all ages, with two peaks of onset: at the age of 20–30 years and at age 50–60 years.^[12] Psoriasis affects men and women equally;^[12] In this regard, taking a larger sample may be more representative of the actual proportions of sex in the target population. Their income varied greatly, some of them having none. In a study by Armstrong *et al.*,^[13] in which they ascertained impairment in quality of life and work productivity among patients with psoriasis and psoriatic arthritis, up to 12% of patients with psoriasis were unemployed, and 92% of them cited the disease as the sole reason for not working. This might be because they are frequently stigmatized at work and are prone to losing professional opportunities as well,^[14] which adds to the economic burden of having to spend for their treatment. Patients without income often rely on family support or government financial aid to access proper treatment, emphasizing the government's role in empowering and supporting this vulnerable group.

Most respondents were single, including widows and widowers, highlighting their need for financial support. The majority were from Metro Manila, and this was expected given that the survey was conducted in a specialized facility within the city. Most had mild psoriasis without comorbidities, relying primarily on TCS for treatment. Information about TCS mainly came from dermatologists, typical for those in tertiary care. Additional sources included family members, healthcare professionals, pharmacists, and media, underscoring the importance of alternative channels to disseminate information on treatment options for patients who may not return for follow-ups at specialized facilities.

Respondents were mostly knowledgeable on TCS, their indications, modes of action, and different potencies, and this may be because, as patients in a specialized facility offering dermatologic care, their physicians-in-charge take time to enlighten patients regarding these aspects of their treatment. Less than half of the patients knew that TCS could be used for vitiligo, although this might be because patients are not familiar with this disease.

It can be inferred that respondents knew about TCS as far as their role in their disease, but not necessarily the negative implications of their misuse. There is a need to educate patients on this aspect. Systematic literature reviews that investigated factors to adherence to topical treatment in psoriasis strongly recommend explaining the side effects of topical therapies for patients with psoriasis, since fear of side effects was one of the most important reasons for patients to deviate from provider recommendations.^[15-17]

It can be noted that many patients in our study believed that allergic reactions are common in TCS, and it is important to explore potential reasons behind this misconception. Patients often derive misinformation about medication side effects from various nonmedical sources such as social media platforms, informal advice from friends or family members, and anecdotal accounts of previous negative experiences with topical treatments.^[18,19] In the Philippines specifically, misinformation regarding topical steroids may also stem from over-the-counter availability, inadequate patient education, or ambiguous labeling, leading users to confuse expected pharmacologic side effects with allergic reactions.^[11] In addition, previous adverse skin reactions or irritations attributed incorrectly to allergies rather than misuse or inappropriate potency selection could reinforce such misconceptions.^[20] To effectively address these issues, targeted educational interventions should explicitly distinguish between common and rare adverse effects of TCS, actively dispel misconceptions, and leverage reliable channels such as healthcare providers and credible online resources to counteract misinformation and TCS phobia.^[18,20] This approach is particularly important given the widespread accessibility yet questionable accuracy of health-related content available on social media platforms.

Most of the respondents had a positive attitude toward TCS, especially their efficacy and safety with proper use. This is an optimistic sign as most existing literature cites the efficacy of medication as a prominent factor affecting adherence, and the belief that the medication not meeting treatment expectations, especially within a perceived time frame, will likely cause self-discontinuation of the drug.^[15-17] Perceptions of medication accessibility were low, with

half of the patients disagreeing or undecided on their affordability and availability in pharmacies. This highlights the need for health and policy reforms to make TCS more affordable and widely available in local pharmacies, ensuring easier procurement and better medication adherence.

Responses regarding TCS practices were mostly positive, showing high adherence to prescribed treatments and follow-up schedules. While patient-reported compliance can be overestimated because patients do not want to risk straining their relationship with their doctors,^[17] the study minimized this bias through anonymous data collection without physician involvement. Respondents were from a specialized facility with twice-weekly follow-ups, which supports monitored, tapered TCS use. Frequent follow-ups were linked to better adherence, particularly in early treatment stages.^[21]

Existing studies linking sociodemographic and clinical profiles of patients with psoriasis to medication adherence show mixed results for factors such as age, sex, marital status, education, employment, disease severity, smoking, and alcohol use.^[15-17,21]

Our findings revealed a negative correlation between age and knowledge of TCS, with older patients demonstrating less knowledge. This might reflect late diagnosis and ongoing learning rather than cognitive decline. There is evidence stating that older patients may show better medication adherence.^[17]

Women demonstrated better TCS knowledge than men. To our knowledge, no other study has examined gender and TCS knowledge among patients with psoriasis, although a survey in Saudi Arabia examining knowledge and attitudes toward TCS among previous users found that women demonstrated greater awareness of the side effects of TCS, and this knowledge was even more pronounced among women with chronic skin conditions such as psoriasis and eczema.^[22] Some evidence exists to explain this. Women generally exhibit more proactive health-seeking behaviors than men, with more frequent and longer clinic visits.^[23] Furthermore, they also typically engage in richer and more interactive dialogue with healthcare providers.^[24] This helps them clarify uncertainties about medications and better remember medical advice.^[24] Men's comparative reservation during visits can limit the information exchange, leading to lower retention of details.^[24] Women also were found to exhibit greater health literacy on average and actively seek out health information from various sources, like reading materials or the internet, compared to their male counterparts.^[25]

No significant correlation was found between respondents' civil status, education, income, residence, disease severity, or comorbidities and their TCS knowledge, attitudes, or practices. This aligns with Chan *et al.*'s study, which found no relationship between clinico-epidemiological factors and inappropriate TCS use among Filipino dermatology patients.^[11] This suggests that social, financial, or physical factors may not act as the barriers to TCS adherence, potentially due to patients receiving support from families, communities, and organizations. These insights can help physicians tailor management plans and prescriptions to improve patient access and adherence.

The study found a positive relationship between patients' attitude and knowledge, indicating that more knowledgeable patients tended to have a positive attitude toward TCS, which promotes adherence. This highlights the importance of patient education in shaping beliefs about TCS. Consultations provide an opportunity to validate positive perceptions, address concerns, and improve adherence by clarifying the medication's efficacy and managing fears about side effects – key factors influencing adherence.^[15-17]

A direct association was observed between attitude and practice regarding TCS; patients with positive attitudes were more likely to adhere to prescribed treatments and maintain follow-up schedules. This aligns with the findings from Horne and Weinman^[26] and Zalewska *et al.*,^[27] which emphasize the role of positive attitudes in adherence.

The study did not find a direct link between knowledge and practice. Several intervening factors, such as personal beliefs, cultural influences, and prior negative experiences with medication use, may influence this discrepancy between them. Personal beliefs and attitudes about medications often significantly impact adherence, even when adequate knowledge is present.^[26] Cultural perceptions and traditional practices regarding skin treatments can also influence the acceptance and correct application of topical medications.^[28] In addition, previous negative experiences, such as adverse reactions from inappropriate potency selection or misuse of TCS, may contribute to lingering concerns or skepticism, limiting adherence despite adequate knowledge.^[18,20] Addressing these mediating factors through culturally sensitive patient counseling, clarification of misconceptions, and tailored interventions could enhance the translation of patient knowledge into improved TCS practices.^[18,26]

The study excluded children and adolescents, missing insights from these groups, and focused only on patients treated at a tertiary care hospital, limiting generalizability

to those self-treating or visiting primary care centers. Future research should include younger populations and patients from diverse care settings to enhance accuracy and representation. Collecting data such as treatment satisfaction, date of diagnosis, duration of disease management, lesion visibility, trust in physicians, and lifestyle habits can provide deeper insights. Similar studies on patients' KAP toward other treatment modalities are likewise recommended to enrich the understanding of patient perspectives and contribute to more informed healthcare decision-making.

CONCLUSION

This study examined patients with psoriasis at a tertiary healthcare facility, focusing on their KAP regarding TCS use. Scores clustered at the higher end, reflecting generally desirable KAP levels toward TCS. Advanced age was linked to poor knowledge, while female respondents demonstrated better knowledge. Higher knowledge was associated with positive attitudes, which, in turn, led to better practices.

The findings indicate that KAP regarding TCS is less influenced by sociodemographic and clinical factors and more by the interrelationship among these domains. Physicians can leverage this relationship by educating patients about TCS to foster positive attitudes, reduce fear of side effects, and encourage adherence to therapy. It is crucial to educate patients on the risks of misuse. Finally, collaboration between the health and political sectors is essential to making TCS more affordable and accessible, ensuring better adherence and treatment outcomes for patients with psoriasis.

Acknowledgment

The authors would like to thank the board-certified dermatologists, linguists, psychometricians, biostatisticians, and bilingual psoriasis patients who participated in the creation, content validity and reliability testing, and translation of the study instrument; the hospital officials who authorized us to conduct this study in the institution; and the respondents who voluntarily agreed to participate in the study.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. *J Eur Acad Dermatol Venereol* 2017;31:205-12.
2. World Health Organization. Global Report on Psoriasis. Geneva: World Health Organization; 2016. Available from: <https://www.who.int/publications/i/item/global-report-on-psoriasis>. [Last accessed on 2023 Aug 23].
3. Fujii RK, Mould JF, Tang B, Brandt H, Pomerantz D, Chapnick J, et al. PSY46 Burden of disease in patients with diagnosed psoriasis in Brazil: Results from 2011 National Health and Wellness Survey (NHWS). *Value Health* 2012;15:A107.
4. Stern RS, Nijsten T, Feldman SR, Margolis DJ, Rolstad T. Psoriasis is common, carries a substantial burden even when not extensive, and is associated with widespread treatment dissatisfaction. *J Investig Dermatol Symp Proc* 2004;9:136-9.
5. Kimball AB, Jacobson C, Weiss S, Vreeland MG, Wu Y. The psychosocial burden of psoriasis. *Am J Clin Dermatol* 2005;6:383-92.
6. Danielsen K, Olsen AO, Wilsgaard T, Furberg AS. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. *Br J Dermatol* 2013;168:1303-10.
7. International Federation of Psoriasis Associations. Philippines Psoriasis Bill Approved. Stockholm: International Federation of Psoriasis Associations; c2023. Available from: <https://ifpa-pso.com/resources-tools/philippines-psoriasis-bill-approved>. [Last accessed on 2023 Aug 23].
8. Thappa DM, Malathi M. Topical therapy of psoriasis: Where do we stand? *J Postgrad Med* 2017;63:210-2.
9. Lebwohl M, Ali S. Treatment of psoriasis. Part 1. Topical therapy and phototherapy. *J Am Acad Dermatol* 2001;45:487-98.
10. Brown KK, Rehms WE, Kimball AB. Determining the relative importance of patient motivations for nonadherence to topical corticosteroid therapy in psoriasis. *J Am Acad Dermatol* 2006;55:607-13.
11. Chan KT, Escandor SE, Manalo DM, Siripunvarapon AH, Batac MR. Factors associated with the inappropriate use of topical corticosteroids among out-patient dermatology patients: A cross-sectional study. *Philipp Med Assoc J* 2023;102:1-17. Available from: <https://www.philippinemicalassociation.org/journal/>. [Last accessed on 2023 Aug 23].
12. Armstrong AW. Psoriasis. *JAMA Dermatol* 2017;153:956.
13. Armstrong AW, Schupp C, Wu J, Bebo B. Quality of life and work productivity impairment among psoriasis patients: Findings from the National Psoriasis Foundation survey data 2003-2011. *PLoS One* 2012;7:e52935.
14. Russo PA, Ilchef R, Cooper AJ. Psychiatric morbidity in psoriasis: A review. *Australas J Dermatol* 2004;45:155-9.
15. Devaux S, Castela A, Archier E, Gallini A, Joly P, Misery L, et al. Adherence to topical treatment in psoriasis: A systematic literature review. *J Eur Acad Dermatol Venereol* 2012;26 Suppl 3:61-7.
16. Burroni AG, Fassino M, Torti A, Visentin E. How do disease perception, treatment features, and dermatologist-patient relationship impact on patients assuming topical treatment? An Italian survey. *Patient Relat Outcome Meas* 2015;6:9-17.
17. Augustin M, Holland B, Dartsch D, Langenbruch A, Radtke MA. Adherence in the treatment of psoriasis: A systematic review. *Dermatology* 2011;222:363-74.
18. Mueller SM, Tomaschett D, Euler S, Vogt DR, Herzog L, Itin P, et al. Topical corticosteroid concerns in dermatological outpatients: A cross-sectional and interventional study. *Dermatology* 2016;232:444-52.
19. Farrugia LL, Lee A, Fischer G, Blaszcynski A, Carter SR, Smith SD. Evaluation of the influence of media coverage on topical corticosteroid phobia in Australia. *J Dermatol Treat* 2022;33:774-9.
20. Lambrechts L, Gilissen L, Morren MA. Topical corticosteroid phobia among healthcare professionals using topical corticosteroids. *J Eur Acad Dermatol Venereol* 2019;33:2174-83.
21. Richards HL, Fortune DG, Griffiths CE. Adherence to treatment in patients with psoriasis. *J Eur Acad Dermatol Venereol* 2006;20:370-9.

22. Alamri RA, Al Satti HS. Knowledge and attitudes towards topical corticosteroids among previous users in the general population of Saudi Arabia. *Cureus* 2024;16:e55373.
23. Thompson AE, Anisimowicz Y, Miedema B, Hogg W, Wodchis WP, Aubrey-Bassler K. The influence of gender and other patient characteristics on health care-seeking behaviour: A QUALICOPC study. *BMC Fam Pract* 2016;17:38.
24. Centers for Disease Control and Prevention (CDC). Women More Likely than Men to Visit the Doctor, More Likely to Have Annual Exams. CDC/NCHS Data Brief. Hyattsville (MD): National Center for Health Statistics; 2001. Available from: <https://stacks.cdc.gov/view/cdc/63077>. [Last accessed on 2023 Aug 23].
25. Manierre MJ. Gaps in knowledge: Tracking and explaining gender differences in health information seeking. *Soc Sci Med* 2015;128:151-8.
26. Horne R, Weinman J. Patients' beliefs about prescribed medicines and their role in adherence to treatment in chronic physical illness. *J Psychosom Res* 1999;47:555-67.
27. Zalewska A, Miniszewska J, Chodkiewicz J, Narbutt J. Acceptance of chronic illness in psoriasis vulgaris patients. *J Eur Acad Dermatol Venereol* 2007;21:235-42.
28. Bewley A. Dermatology patients: Beliefs, expectations, and attitudes. *Dermatol Pract Concept* 2014;4:33-7.