

Herbal remedies for Alzheimer's disease: neuroprotective mechanisms and cognitive enhancement potential

Dharmalingam Kirubakaran*

Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India

ARTICLE INFO

Article history

Received 06 March 2025

Accepted 17 May 2025

Available online 25 June 2025

ABSTRACT

Keywords

Alzheimer's disease

Neuroprotective mechanisms

Medicinal plants

Phytochemicals

Oxidative stress

Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by memory loss and cognitive decline. Current drugs offer limited benefits and often cause side effects. Recently, interest has grown in medicinal plants for the treatment of AD due to their neuroprotective compounds. This review explores how herbal remedies may help AD, focusing on key plants including *Ginkgo biloba*, *Curcuma longa*, *Withania somnifera*, and *Panax ginseng*. These plants show promise in reducing inflammation, oxidative stress, and amyloid buildup. Their bioactive compounds, including flavonoids and alkaloids, may promote memory and slow AD progression. Despite these promising findings, the review also highlights significant challenges in translating preclinical success into clinical efficacy. Issues such as variability in plant composition, lack of standardized formulations, insufficient large-scale clinical trials, and regulatory hurdles continue to impede the integration of herbal therapies into mainstream AD treatment. Addressing these challenges through rigorous scientific validation and standardized protocols is essential for advancing the use of herbal medicine in neurodegenerative disease management.

1 Introduction

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder, predominantly affecting cognitive processes such as memory, attention, and executive function. As the most prevalent etiology of dementia globally, AD represents a critical and escalating public health challenge, particularly given the demographic shift toward an aging population [1]. Pathologically, AD is characterized by the deposition of extracellular amyloid- β (A β) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein [2]. These neurotoxic aggregates lead to widespread neuronal

damage and synaptic loss, resulting in a gradual decline in cognitive function and the ability to perform daily activities. This progressive degeneration ultimately causes severe cognitive impairment, greatly diminishing the quality of life for both patients and caregivers [3].

Despite several decades of intensive research into potential therapeutic interventions, the pharmacological management of AD remains suboptimal. Current treatment strategies, which are primarily based on acetylcholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists, offer limited symptomatic relief and fail to halt or reverse disease progression [4]. Moreover, these therapeutic agents are often associated

*Corresponding author: Dharmalingam Kirubakaran, E-mail: kirupa1997bsc@gmail.com.

Peer review under the responsibility of Hunan University of Chinese Medicine.

DOI: 10.1016/j.dcmed.2025.05.002

Citation: KIRUBAKARAN D. Herbal remedies for Alzheimer's disease: neuroprotective mechanisms and cognitive enhancement potential. Digital Chinese Medicine, 2025, 8(2): 183-195.

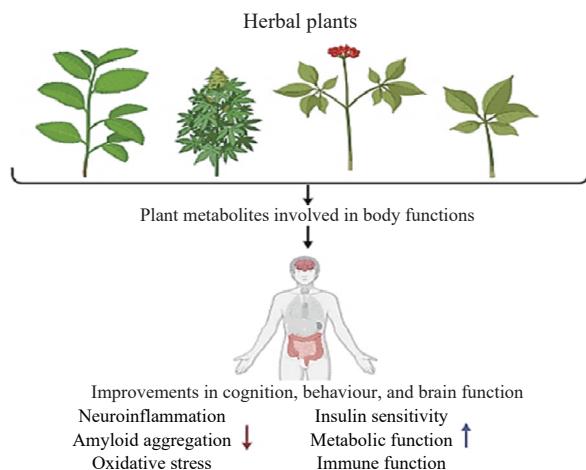
with notable side effects, such as gastrointestinal distress and cardiovascular complications, which further emphasize the need for novel, more effective, and safer treatment modalities. Consequently, there is an increasing demand for alternative and adjunctive therapeutic approaches that not only alleviate symptoms but also target the underlying pathophysiological mechanisms of AD more comprehensively and sustainably [5].

Recent research has considerably shifted focus to exploring the neuropharmacological potential of medicinal plants, which possess diverse bioactive compounds with antioxidant, anti-inflammatory, and neuroprotective properties [6]. Several herbal remedies have been shown to have the ability to modulate key molecular pathways involved in AD, including oxidative stress, neuroinflammation, cholinergic dysfunction, and the accumulation of misfolded proteins [7]. Specific herbs, such as *Ginkgo biloba*, *Bacopa monnieri*, *Curcuma longa*, *Withania somnifera*, and *Rosmarinus officinalis*, have garnered considerable attention due to their cognitive-enhancing effects and neuroprotective capabilities. Several herbal remedies show promise in supporting cognitive function in AD [8, 9].

This review aims to provide an exhaustive evaluation of the medicinal herbs that have been systematically studied for their therapeutic potential in AD. By critically examining their mechanisms of action, preclinical and clinical evidence, pharmacokinetic profiles, and safety considerations, this article seeks to offer a nuanced perspective on the feasibility of integrating herbal remedies

as adjuncts into conventional pharmacological treatments [10, 11]. Additionally, the review outlines specific directions for future research, stressing the need for rigorous randomized controlled trials (RCTs) to establish standardized dosages, formulations, and long-term safety profiles of these herbal interventions. A comprehensive understanding of the synergistic effects between herbal remedies and existing pharmacotherapies could provide a more holistic and sustainable approach to managing AD in clinical practice [12].

2 Herbal plants targeted for AD treatment


Recent clinical and preclinical studies have identified several herbal remedies as promising candidates for the treatment of AD. These herbs are thought to exert therapeutic effects through multiple mechanisms, including reducing oxidative stress, inhibiting neuroinflammation, promoting neurogenesis, and modulating neurotransmitter systems [13]. The therapeutic potential of these herbs for AD treatment is summarized in Table 1 and Figure 1 (all figures in this article were created using BioRender.com).

2.1 *Ginkgo biloba*

Ginkgo biloba, a plant with a long history of use in traditional Chinese medicine, has become one of the most explored herbs for cognitive health. Its therapeutic effects are primarily attributed to its antioxidant and anti-inflammatory properties [14]. It contains bioactive

Table 1 Herbal remedies for the treatment of AD

Herb	Bioactive compound	Mechanism	Therapeutic use	Reference
<i>Panax ginseng</i>	Ginsenosides	Enhances energy, reduces fatigue	Fatigue, stress reduction	[13]
<i>Lavandula angustifolia</i>	Linalool, linalyl acetate	Modulates GABA receptors	Anxiety, headaches	[13]
<i>Echinacea purpurea</i>	Alkanides, echinacosides	Stimulates immune response	Colds, respiratory infections	[14]
<i>Mentha piperita</i>	Menthol	Relaxes smooth muscles	Digestive issues	[13, 14]
<i>Ginkgo biloba</i>	Flavonoids, terpenoids	Enhances blood flow, antioxidant effects	Memory, cognitive enhancement	[15]
<i>Curcuma longa</i>	Curcumin	Anti-inflammatory, antioxidant	Joint pain, inflammation	[16, 17]
<i>Allium sativum</i>	Allicin	Antibacterial, antiviral	Cardiovascular health	[17]
<i>Withania somnifera</i>	Withanolides	Modulates cortisol, adaptogenic	Stress, anxiety management	[18]
<i>Hypericum perforatum</i>	Hypericin	Inhibits neurotransmitter reuptake	Depression, mood disorders	[18, 19]
<i>Bacopa monnieri</i>	Bacosides	Modulates neurotransmitters	Memory enhancement	[20]
<i>Matricaria chamomilla</i>	Apigenin, bisabolol	Binds benzodiazepine receptors	Anxiety, sleep disorders	[21]
<i>Silybum marianum</i>	Silymarin	Antioxidant, hepatoprotective	Liver health	[20, 21]
<i>Aloe barbadensis</i>	Acemannan, anthraquinones	Promotes wound healing	Skin care	[20, 21]
<i>Ocimum sanctum</i>	Eugenol, ursolic acid	Modulates stress response	Stress relief	[22, 23]
<i>Rhodiola rosea</i>	Rosavins, salidroside	Adaptogenic, reduces stress	Fatigue, cognitive support	[24, 25]
<i>Valeriana officinalis</i>	Valerenic acid	Increases brain activity	Insomnia, anxiety	[26, 27]
<i>Cinnamomum verum</i>	Cinnamaldehyde	Improves insulin sensitivity	Blood sugar regulation	[28, 29]
<i>Salvia officinalis</i>	Rosmarinic acid, flavonoids	Modulates acetylcholine	Cognitive improvement	[30, 31]
<i>Huperzia serrata</i>	Huperzine A	Inhibits acetyl cholinesterase	Cognitive enhancer	[32, 33]

Figure 1 Herbal plants target the treatment of AD

flavonoids and terpenoids that help protect neurons from oxidative damage and reduce neuroinflammation, which is crucial in AD pathology. One of its primary mechanisms of action is the inhibition of platelet-activating factor (PAF), which improves cerebral blood flow, ensuring better oxygen and nutrient delivery to neurons. Clinical findings on its efficacy in AD have yielded mixed results [15]. Recent improvements in memory, attention, and daily functioning among AD patients suggest that *Ginkgo biloba* may offer modest cognitive benefits. However, other clinical trials have not consistently shown significant improvements, emphasizing the need for more rigorous, large-scale studies to determine the herb's true effectiveness and therapeutic role in AD treatment. Despite these mixed results, *Ginkgo biloba* remains of interest due to its neuroprotective properties and potential to enhance cerebral blood flow [16].

2.2 *Curcuma longa*

Curcuma longa, commonly known as turmeric, has gained substantial attention in the context of AD due to its active compound, curcumin, which possesses powerful anti-inflammatory and antioxidant properties [17]. The effects of curcumin on AD are multifaceted: it not only helps to reduce amyloid plaque accumulation by modulating the enzymes responsible for A β formation but also acts as a potent free radical scavenger, thereby reducing oxidative stress and neuronal damage [18]. Furthermore, curcumin affects critical signalling pathways involved in neuroinflammation and neuronal survival, including the nuclear factor-kappa B (NF- κ B) and mitogen-activated protein kinase (MAPK) pathways, increasing its neuroprotective capacity. Preclinical studies suggest curcumin can reduce amyloid plaque load, promote neurogenesis, and modulate inflammatory responses in the brain. However, the low bioavailability of curcumin, which means that only a small portion of the compound reaches the brain when administered orally, remains a considerable challenge for its widespread clinical use [19].

2.3 *Bacopa monnieri*

Bacopa monnieri, also known as Brahmi, is a revered herb in Ayurvedic medicine, which is used primarily to strengthen memory and cognitive function. The herb's primary bioactive compounds, bacosides, are thought to improve neurotransmission, particularly by enhancing acetylcholine signaling, a neurotransmitter crucial for memory and learning. *Bacopa monnieri* also indicates strong antioxidant properties that protect neurons from oxidative damage, a key contributor to the progression of AD [20]. Clinical trials have demonstrated that *Bacopa monnieri* can significantly improve memory, attention, and cognitive performance in both healthy individuals and those experiencing cognitive decline. In patients with AD, *Bacopa monnieri* has been shown to reduce anxiety and enhance cognitive function. Preclinical studies further support its neuroprotective role, particularly against oxidative stress induced neuronal damage. Collectively, these findings underscore *Bacopa monnieri* potential as a therapeutic agent in the management of AD [21, 22].

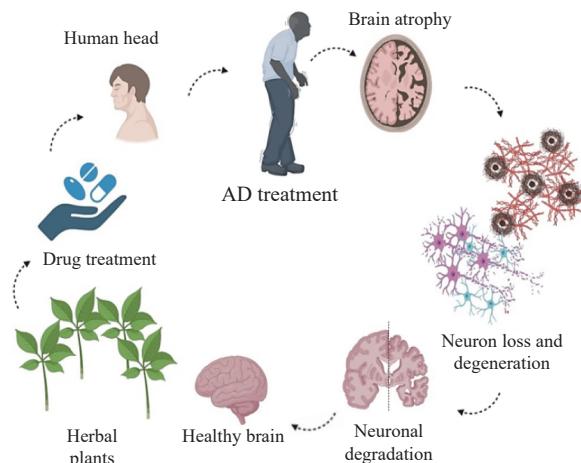
2.4 *Withania somnifera*

Withania somnifera, which is commonly known as ashwagandha, is an adaptogenic herb traditionally used in Ayurvedic medicine for its stress-reducing and general health-promoting properties. Recent study has highlighted its neuroprotective potential in AD [23]. The primary mechanism of ashwagandha in AD is linked to its modulation of stress hormones, especially cortisol, which exhibits elevated levels in neurodegenerative conditions. By reducing chronic stress, ashwagandha may lower neuroinflammation, a key contributor to the progression of AD [24]. In addition to modulating stress responses, ashwagandha demonstrates potent antioxidant properties, which protect neurons from oxidative damage and promote neurogenesis. Animal studies have demonstrated that ashwagandha can reduce cognitive decline, improve memory, and prevent stress-induced brain damage. While human studies are still limited, preliminary data suggest that ashwagandha may enhance memory and support cognitive function in aging individuals, making it a promising candidate for the treatment of AD [25].

2.5 *Rosmarinus officinalis*

Rosmarinus officinalis (rosemary) is a commonly used culinary herb that has gained attention for its potential cognitive enhancing properties. It contains rosmarinic acid, a bioactive compound with both antioxidant and anti-inflammatory effects [26]. Rosmarinic acid has been shown to protect neurons from oxidative stress and reduce inflammation in the brain, two critical factors involved in AD. Moreover, rosemary may improve blood

circulation to the brain, further supporting cognitive function and protecting against neurodegeneration. Preliminary studies suggest that rosemary may enhance memory and concentration. One study indicated that inhaling rosemary essential oil improved cognitive performance in healthy individuals, although further clinical research is needed to establish its efficacy in patients of AD [27, 28].


2.6 *Salvia officinalis*

Salvia officinalis (sage) is another herb known for its memory enhancing effects and has been used in traditional medicine for centuries. Its effectiveness in AD is largely attributed to its ability to inhibit acetyl cholinesterase, the enzyme responsible for breaking down acetylcholine [29, 30]. Acetylcholine is a neurotransmitter that plays a vital role in memory and learning, and its depletion is a hallmark of AD. By preventing the breakdown of acetylcholine, sage plays a beneficial role in increasing acetylcholine levels in the brain, thus enhancing cognitive function [31, 32]. Clinical trials have shown that sage can significantly improve memory and cognitive performance in individuals with mild to moderate AD, with some studies also demonstrating a reduction in behavioral symptoms. The acetylcholinesterase inhibition of sage and cognitive enhancing properties make it a valuable herb in treating AD [33].

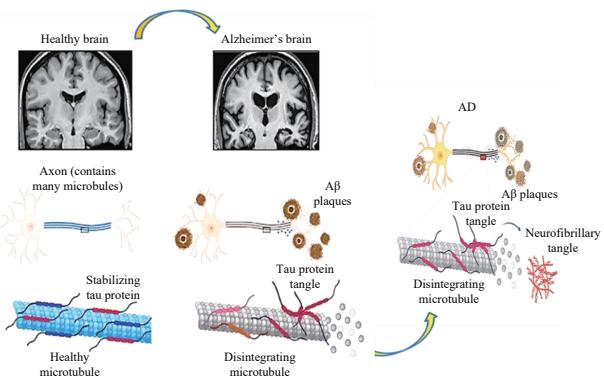
3 Mechanisms of herbal remedies in AD

Herbal remedies have been employed in traditional medicine for centuries, owing to their therapeutic potential in

managing various health conditions, including neurodegenerative diseases such as AD [34]. Recent study has elucidated the multifaceted mechanisms through which specific herbs exert neuroprotective and cognitive enhancing effects, providing promising adjunctive strategies for AD management [35]. AD, a progressive neurodegenerative disorder, is characterized by multiple intertwined pathogenic processes that contribute to cognitive decline, memory loss, and behavioral changes. These include the accumulation of neurotoxic proteins, oxidative stress, chronic neuroinflammation, and disturbances in neurotransmitter systems [36]. The interaction between these mechanisms plays a central role in the pathophysiology of AD, leading to synaptic dysfunction, neuronal loss, and cognitive impairments (Figure 2 and Table 2).

Figure 2 Overview of the pathophysiological mechanisms in AD and its herbal treatment

Table 2 Pathophysiological features of AD and their role in cognitive mechanisms


Feature	Description	Mechanism	Reference
Amyloid plaques	Extracellular A β deposits	Accumulation and aggregation between neurons	[34, 35]
Tau tangles	Intracellular tangles	Tau protein abnormalities	[36, 37]
Neuroinflammation	Activation of microglia	Triggered by amyloid plaques and tau tangles	[38]
Neuronal death	Neuron loss in critical brain areas	Induced by amyloid plaques	[39]
Synaptic dysfunction	Loss of synaptic connections	Impaired synaptic signalling	[40]
Cholinergic dysfunction	Reduced brain acetylcholine	Loss of basal forebrain cholinergic neurons	[41]
Vascular changes	Blood-brain barrier disruption	Vascular dysfunction contributes to amyloid build-up	[42, 43]
Genetic factors	Presence of genetic risk variants	Promotes amyloid plaque formation	[44-46]
Mitochondrial dysfunction	Impaired energy metabolism	Leads to oxidative stress and neuronal damage	[47-49]

3.1 Amyloid plaques and herbal modulation

A defining feature of AD is the accumulation of amyloid-beta plaques in the brain, which are derived from the amyloid precursor protein (APP) through enzymatic cleavage (Figure 3). Under normal conditions, A β is typically cleared from the brain, but in AD, it aggregates into insoluble plaques that disrupt synaptic communication

and induce neurotoxicity [37]. These plaques activate microglial cells, triggering a cascade of inflammatory responses that further damage neurons and accelerate disease progression. Herbal remedies, such as *Curcuma longa* and *Ginkgo biloba*, have indicated the potential in inhibiting A β aggregation, thereby preventing plaque formation [38]. *Curcuma longa*, with its active compound curcumin, has demonstrated the ability to disrupt A β fibril

formation and facilitate its clearance from the brain. Similarly, *Ginkgo biloba* has been shown to exhibit A β modifying activity, contributing to the reduction of amyloid plaque burden and offering neuroprotective benefits for patients with AD [39].

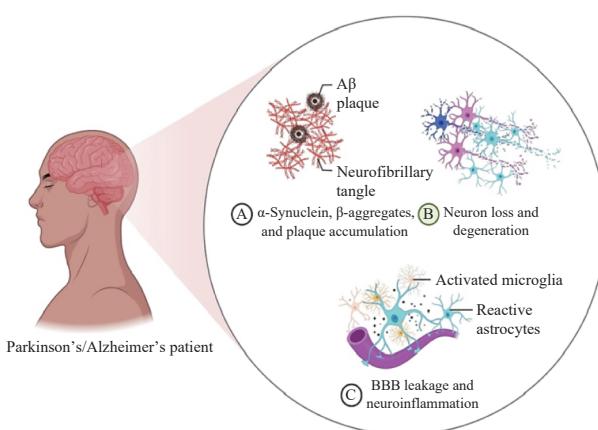
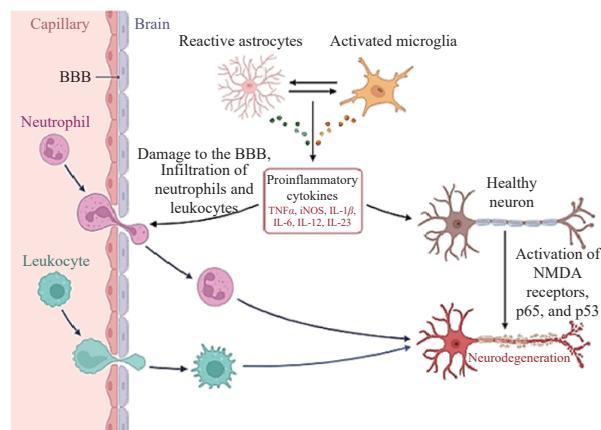


Figure 3 General mechanisms involved in the pathology of AD

3.2 Hyperphosphorylation and neurofibrillary tangles

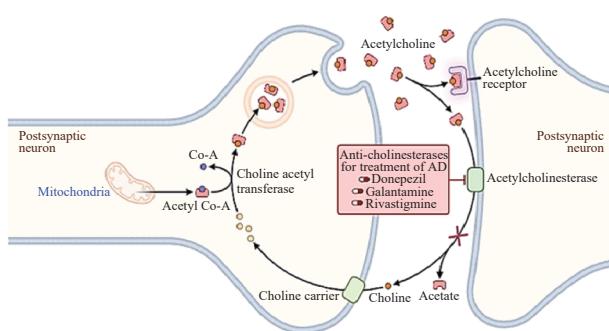

Another hallmark of AD is the accumulation of NFTs, which are primarily composed of hyperphosphorylated tau protein (Figure 4). Tau, a microtubule-associated protein, stabilizes neuronal microtubules and supports intracellular transport. In AD, tau undergoes abnormal phosphorylation, causing detachment from microtubules and the formation of insoluble tangles that disrupt neuronal function [40]. This process impairs intracellular transport mechanisms, which results in neuronal dysfunction and ultimately contributes to neuronal death. Herbal compounds, such as those derived from *Withania somnifera* (ashwagandha), have been shown to modulate tau phosphorylation. *Withanolides*, the active constituents in ashwagandha, may help reduce tau hyperphosphorylation, thereby preventing tangle formation and preserving microtubule stability [41].

Chronic neuroinflammation is a considerable factor

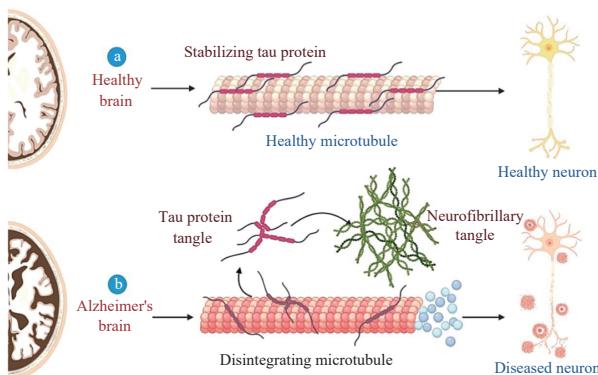
Figure 4 Hyperphosphorylation and neurofibrillary tangle formation in an AD patient. BBB, blood brain barrier.

in the development and progression of AD (Figure 5). Normally, microglia and astrocytes in the brain play key roles in immune defense and maintaining neuronal homeostasis [42]. However, in AD, these glial cells become overactivated, leading to the excessive release of inflammatory cytokines, reactive oxygen species (ROS), and other cytotoxic molecules [43]. This persistent inflammation exacerbates neuronal injury, impairs synaptic function, and accelerates the accumulation of A β and tau aggregates. Herbal remedies with anti-inflammatory properties, such as *Curcuma longa* (turmeric), *Withania somnifera* (ashwagandha), and *Rosmarinus officinalis* (rosemary), have demonstrated the ability to modulate neuroinflammatory pathways [44]. Curcumin, the active compound in *Curcuma longa*, inhibits the NF-κB signalling pathway, a central regulator of inflammatory gene expression. Similarly, withanolides in *Withania somnifera* have indicated potential in reducing cytokine levels and suppressing the activation of pro-inflammatory enzymes, thus mitigating neuroinflammation and offering neuroprotective effects [45].

Figure 5 Roles of astrocytes and microglia in neurodegeneration


3.3 Oxidative stress and antioxidant mechanisms

Oxidative stress is another critical factor causing neuronal damage in AD. The brain, with its high metabolic rate and abundance of polyunsaturated fatty acids, is highly vulnerable to oxidative damage [46]. Free radicals, such as ROS, can induce lipid peroxidation, protein damage, and DNA damage, all of which contribute to the pathogenesis of AD [47]. Herbal remedies, which are rich in antioxidant compounds, such as *Curcuma longa* (curcumin) and *Bacopa monnieri* (bacopa), can neutralize free radicals and restore the balance between oxidants and antioxidants [48]. These herbs demonstrate potent antioxidant activities, scavenging ROS, and reducing the oxidative damage that brings about the formation of amyloid plaques and tau tangles. By enhancing the brain's endogenous antioxidant defense, herbal compounds may


aid in alleviating oxidative stress, offering a neuroprotective effect that may slow the progression of AD [49].

3.4 Specific mechanisms of herbal remedies in AD

As a progressive neurodegenerative disorder, AD is featured with extracellular deposition of A β plaques, intracellular NFTs composed of hyperphosphorylated tau protein, synaptic degeneration, and sustained neuroinflammation [50] (Figure 6 and 7). Herbal remedies, those rooted in traditional medicinal systems such as Ayurveda, traditional Chinese medicine (TCM), and Kampo in particular, have gained increasing attention due to their pleiotropic biological activities, lower adverse effect profiles, and long-standing ethno pharmacological use [51].

Figure 6 Anti-cholinesterase mechanism in AD

Figure 7 Brain mechanisms in AD

3.4.1 Inhibition of A β aggregation and promotion of clearance One of the central pathogenic features of AD is the accumulation of neurotoxic A β oligomers and plaques, which were primarily derived from APP through sequential cleavage by β -secretase (BACE1) and γ -secretase. Several herbal compounds have demonstrated efficacy in disrupting A β production, aggregation, and deposition [52]. Curcumin, a polyphenol from *Curcuma longa*, exhibits a high binding affinity for A β aggregates and disrupts β -sheet-rich fibril structures, facilitating microglial-mediated phagocytosis of plaques. Ginsenosides derived from *Panax ginseng* reduce A β generation by modulating secretase activity and promoting non-amyloidogenic APP

processing via α -secretase. Likewise, epigallocatechin-3-gallate (EGCG), a catechin from *Camellia sinensis* (green tea), inhibits A β oligomerization and boosts clearance through proteasomal and autophagic pathways in pre-clinical AD models [53].

3.4.2 Tau protein stabilization and anti-hyperphosphorylation Intraneuronal accumulation of hyperphosphorylated tau disrupts microtubule stability, impairs axonal transport, and forms NFTs. Herbal bioactives have shown potential in modulating tau phosphorylation and stabilizing cytoskeletal dynamics [54]. Baicalin, a flavone glycoside from *Scutellaria baicalensis*, and withanolides derived from *Withania somnifera* (ashwagandha) attenuate tau hyperphosphorylation by inhibiting the activity of tau kinases such as glycogen synthase kinase (GSK)-3 β and cyclin-dependent kinase 5 (CDK5). These compounds also upregulate phosphatases including PP2A, which restore the physiological phosphorylation state of tau and preserve neuronal microtubule integrity [55].

3.4.3 Antioxidant activity and redox homeostasis Oxidative stress plays a pivotal role in AD pathogenesis by inducing lipid peroxidation, protein oxidation, and mitochondrial dysfunction. Herbal antioxidants act both as direct free radical scavengers and modulators of redox-sensitive transcription factors [56]. Resveratrol derived from *Vitis vinifera*, rosemary extract derived from *Rosmarinus officinalis*, and EGb761, a standardized extract of *Ginkgo biloba* activate the nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. This leads to upregulation of phase II detoxifying and antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, hence mitigating oxidative neuronal injury and supporting mitochondrial function [57].

3.4.4 Anti-inflammatory and immunomodulatory effects Chronic neuroinflammation, mediated by over-activated microglia and astrocytes, exacerbates AD pathology through the sustained release of inflammatory cytokines and reactive species. Herbal agents such as curcumin, glycyrrhizin from *Glycyrrhiza glabra* and ginsenosides suppress neuroinflammation by inhibiting key inflammatory transcription factors, including NF- κ B and MAPKs. These compounds reduce the expression of pro-inflammatory mediators such as interleukin (IL)-1 β , tumor necrosis factor (TNF)- α , and inducible nitric oxide synthase (iNOS), thus preserving neuronal viability and function [58].

3.4.5 Enhancement of cholinergic neurotransmission Deficits in cholinergic neurotransmission, primarily owing to the degeneration of basal forebrain cholinergic neurons and decreased levels of acetylcholine (ACh), are closely associated with cognitive impairment in AD. Huperzine A, a naturally occurring alkaloid from *Huperzia*

serrata, is a potent, reversible acetylcholinesterase (AChE) inhibitor that increases synaptic ACh concentration. In addition, *Bacopa monnieri* facilitates cholinergic function by upregulating choline acetyltransferase (ChAT) and reducing oxidative stress in cholinergic neurons, supporting cognitive processes such as learning and memory [59].

3.4.6 Promotion of neurogenesis and synaptic plasticity

Cognitive resilience in AD is closely linked to neurogenesis and synaptic plasticity, especially in the hippocampus. *Withania somnifera* has been shown to promote neurite outgrowth, dendritic branching, and synaptic density. Likewise, *Centella asiatica* (gotu kola) stimulates neuronal regeneration and synaptic connectivity by increasing the expression of brain-derived neurotrophic factor (BDNF) and other neurotrophic factors. These effects contribute to improved long-term potentiation (LTP) and synaptic signalling, which is critical for memory consolidation [60].

3.4.7 Mitochondrial protection and enhancement of energy metabolism

Mitochondrial dysfunction and impaired bioenergetics are early events in AD, promoting synaptic degeneration and neuronal apoptosis. Herbal compounds, such as salvianolic acid B from *Salvia miltorrhiza*, preserve mitochondrial membrane potential, improve ATP synthesis, and inhibit cytochrome c release.

These effects strengthen mitochondrial resilience to oxidative stress and prevent caspase-mediated apoptotic pathways, supporting neuronal survival and metabolic homeostasis [61].

4 Future directions and challenges

4.1 The need for more rigorous clinical trials to validate efficacy

To advance the use of herbal remedies in the treatment of AD, it is essential to conduct more comprehensive clinical trials, as shown in Table 3. Although preclinical studies and some smaller clinical trials have indicated promising results, the overall evidence supporting these herbal treatments remains limited [62]. These trials should evaluate the effectiveness of herbal remedies across diverse patient populations and various stages of the disease. Given the progressive nature of AD, it is important to assess the long-term impact of these treatments, as extended follow-up periods will provide valuable insights into their potential to slow disease progression or raise quality of life. Additionally, future studies should incorporate biomarkers, such as brain imaging, genetic markers, and protein levels, to obtain a more precise understanding of how herbal remedies affect AD at the molecular and cellular levels [63, 64].

Table 3 Challenges and limitations in AD diagnosis and herbal treatment

Category	Challenge/limitation	Reference
Diagnosis	Early detection is difficult in biomarkers and imaging are costly	[62-64]
Understanding	Incomplete knowledge in disease progression varies	[65-68]
Treatment options	Treatments are symptomatic of potential side effects	[68-71]
Research	Limited animal models in the lack of large-scale trial resources	[72-75]
Caregiving	High caregiver burden of need for specialized care	[76-78]
Awareness & education	Mental health stigma in low public awareness	[79-83]
Technology	Low use of assistive technologies	[84-88]
Social impact	Disruption of relationships and daily life	[89-94]

A major challenge with herbal remedy in the treatment of AD is the low bioavailability of many active compounds. For instance, curcumin from turmeric and bacosides from *Bacopa monnieri* are often poorly absorbed by the body, which limits their therapeutic efficacy. To overcome this limitation, it is crucial to develop more bioavailable formulations [65]. Innovations such as nanoparticles and nanoemulsions can enhance the solubility and absorption of herbal compounds, making them more readily available for therapeutic use [66]. These advanced formulations can slow the metabolic breakdown of active compounds, thereby prolonging their circulation in the bloodstream. This extended bioavailability enhances their neuroprotective efficacy, which may translate into improved clinical outcomes for AD. Ultimately, such

strategies could maximize the therapeutic potential of herbal remedies against AD [67].

Exploring combined therapies that pair herbal remedies with conventional pharmaceutical treatments presents an exciting avenue for future research. Current medications for AD, such as acetylcholinesterase inhibitors (including donepezil and rivastigmine) and glutamate regulators, provide symptomatic relief but do not slow disease progression [68]. Combining herbal remedies with these medications could yield synergistic effects, enhancing overall treatment outcomes [69]. For instance, *Ginkgo biloba* may complement cholinesterase inhibitors by improving cognitive function and reducing cognitive decline when used together. Similarly, the anti-inflammatory properties of curcumin could boost the

neuroprotective effects of pharmaceutical drugs [70, 71].

This combined approach could target multiple pathways in AD, such as reducing oxidative stress, managing inflammation, and preventing amyloid plaque formation. Personalized medicine continues to evolve, developing treatment plans tailored to an individual's genetic, biochemical, and clinical profile will be vital for optimizing AD management [72]. Personalized approaches can help identify which herbal remedies are most effective based on a patient's genetic predisposition, biomarker status, and treatment response. Certain genetic variants, such as the apolipoprotein E4 (APOE4) allele, can increase an individual's susceptibility to AD. By considering a patient's unique genetic makeup, healthcare providers may be able to identify herbal treatments that are most likely to yield positive outcomes [73]. Additionally, integrating biomarkers such as A β , tau, and neuroinflammation markers into clinical practice can guide treatment decisions and monitor the effectiveness of herbal remedies by assessing their influence on key AD-related processes [74].

4.2 Research limitations in herbal treatments of AD

The herbal therapies for AD have shown promising pre-clinical potential, but several key limitations in the current body of research hinder their bench-to-bedside translation (Table 3). These challenges merit the need for more systematic, standardized, and evidence-based research [75]. A primary limitation lies in the lack of standardization of herbal preparations. Herbal remedies are derived from botanicals whose chemical compositions are highly variable due to differences in species, geographical origin, cultivation methods, harvest time, and extraction techniques [76]. Such variability affects the concentration, stability, and bioavailability of bioactive compounds, resulting in inconsistent therapeutic efficacy across studies. Without standardized protocols for formulation and quality control, it becomes difficult to replicate findings or assess treatment outcomes reliably [77]. Another major constraint is the limited number of well-designed clinical trials. While numerous *in vitro* and animal studies demonstrate the neuroprotective, anti-inflammatory, and cognitive benefits of herbal extracts, human trials are often small in scale, short in duration, and methodologically limited [78]. Most studies involve narrow patient populations, reducing the generalizability of findings. Moreover, the complex and multifactorial nature of AD encompassing A β accumulation, tau pathology, oxidative stress, neuroinflammation, and synaptic loss poses difficulty in isolating the specific effects of herbal compounds without robust, multifaceted clinical evaluations [84].

Potential herbal drug interactions also represent a critical but underexplored area of concern. Patients with

AD, who are typically elderly and often on multiple medications for comorbid conditions, may be at risk of adverse interactions when herbal treatments are used concurrently with standard pharmaceuticals [79]. Certain herbal compounds can alter drug metabolism, especially through modulation of cytochrome P450 enzymes, potentially affecting the efficacy or toxicity of co-administered drugs [80]. Regulatory challenges and lack of quality control further complicate the clinical adoption of herbal therapies. Unlike conventional pharmaceuticals, herbal products are not always subject to rigorous regulatory scrutiny, leading to inconsistencies in purity, potency, and safety [81]. Contamination with heavy metals, adulterants, or variable active compound content is not uncommon in commercial herbal formulations. The lack of regulation reduces confidence in the reliability of herbal products and underscores the need for stricter quality assurance and regulatory oversight [82, 83]. Finally, while the mechanistic understanding of herbal compounds in AD is expanding, it remains largely preliminary. Although bioactive compounds such as *curcumin*, *ginsenosides*, *Bacopa monnieri*, and *Ginkgo biloba* show promise in modulating key AD-related pathways such as amyloid aggregation, tau phosphorylation, oxidative damage, and neuroinflammation, the exact molecular mechanisms remain insufficiently characterized. More in-depth mechanistic studies are warranted to elucidate their cellular targets and optimize therapeutic strategies [85, 86].

5 Future safety and efficacy considerations

As the interest in herbal remedies for AD continues to grow, future research must prioritize the rigorous assessment of both safety and efficacy to support their integration into mainstream clinical practice [87, 88]. Although multiple herbal compounds exhibit neuroprotective and cognitive enhancing properties in preclinical studies, their clinical viability depends on overcoming several translational challenges. A key aspect of future development is the establishment of comprehensive safety profiles for herbal compounds and their standardized formulations [88, 89]. Long-term toxicity data, dose-dependent adverse effects, and potential interactions with conventional AD medications must be systematically evaluated. This is particularly critical given the target elderly population, who often present with polypharmacy and increased susceptibility to metabolic and hepatic alterations [90, 91]. The development of pharmacovigilance systems specific to botanical therapies will be essential in identifying and managing herb-drug interactions and adverse events [92].

On the efficacy front, well-powered, randomized controlled trials (RCTs) with standardized dosage, validated cognitive outcome measures, and long-term follow-up are needed to confirm the therapeutic benefits

observed *in vitro* and *in vivo* [93, 94]. Emphasis should be placed on trials that reflect real-world patient heterogeneity, including diverse genetic, lifestyle, and comorbidity backgrounds [95, 96]. Additionally, the use of biomarkers such as amyloid PET imaging, cerebrospinal fluid tau levels, and markers of oxidative stress and neuroinflammation can help establish mechanistic correlations between herbal interventions and AD pathology [97, 98]. The application of modern pharmacological tools including network pharmacology, metabolomics, and molecular docking will promote our understanding of the multi-target actions of herbal compounds and may facilitate the identification of novel bioactive constituents [99]. Furthermore, nanotechnology-based delivery systems could improve the bioavailability and brain-targeting efficiency of poorly soluble herbal extracts, thereby optimizing therapeutic efficacy [100, 101]. Finally, regulatory frameworks must evolve to support the safe and ethical use of herbal medicines in AD care. Implementation of Good Manufacturing Practices (GMP), quality assurance protocols, and standardization of herbal extracts are essential to ensure consistency, reproducibility, and patient trust [102].

6 Conclusion

The findings of this review highlight the urgent need for innovative approaches in addressing the escalating prevalence of AD. Herbal remedies, used in traditional medicine for a long time, show promising neuroprotective and cognitive enhancing properties that merit further investigation. This review has examined several key herbs, including *Ginkgo biloba*, *Bacopa monnieri*, *Curcuma longa*, *Withania somnifera*, and *Rosmarinus officinalis*. The combined properties of these herbs suggest that they could serve as valuable complementary treatment options for individuals with AD, which potentially enhance cognitive function and mitigate disease progression. However, it is crucial to emphasize that further research is warranted. Rigorous clinical trials are required to thoroughly assess the efficacy and safety of these herbal interventions and to explore their possible integration with conventional therapies. Such studies in the future will clarify optimal dosages, treatment regimens, and mechanisms of action, ultimately leading to improved management strategies for AD. By deepening our understanding of these natural substances, we can better harness their therapeutic potential and strengthen outcomes for those with this condition.

Acknowledgements

The authors extend appreciation to the Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha University, Chennai, Tamil Nadu 602105, India.

Competing interests

The authors declare no conflict of interest.

References

- [1] OYOWI MO, et al. Exploring the role of neuromodulation in neurodegenerative disorders: insights from Alzheimer's and Parkinson's diseases. *Brain Disorders*, 2025, 17: 100187.
- [2] REDDY GVR, THALLA S. Approved drug regimens, combinations, and delivery systems for Alzheimer's disease. Multi-Factorial Approach as a Therapeutic Strategy for the Management of Alzheimer's disease. Singapore: Springer Nature Singapore, 2024: 177-198.
- [3] VEGGI S, ROVETA F. Neurodegenerative disorders in criminal offending and cognitive decline among aging inmates. *NeuroSci*, 2025, 6(1): 5.
- [4] ISSA AA. Mechanistic insights into the molecular and cellular basis of Alzheimer's disease. Essential Guide to Neurodegenerative Disorders. Amsterdam: Elsevier, 2025: 211-221.
- [5] KUMARI S, BAGRI K, DESHMUKH R. Connecting dots: pre-clinical foundations to clinical realities of PDE4 inhibitors in Alzheimer's disease. *Inflammopharmacology*, 2025, 33(2): 593-603.
- [6] ASWAR U, PATIL R, AKOTKAR L, et al. Molecular mechanism of action of phytoconstituents in neuropsychiatric disorders. *NeuroPhytomedicine*. Boca Raton: CRC Press, 2023: 83-113.
- [7] NAEEM S, SAEED KHAN S, SHAFIQ Y, et al. Emerging role of medicinal herbs on Alzheimer's disease and memory deficits. Medicinal Plants-Harnessing the Healing Power of Plants. London: IntechOpen, 2024.
- [8] KOPPULA S, WANKHEDE NL, SAMMETA SS, et al. Modulation of cholesterol metabolism with phytotherapies in Alzheimer's disease: a comprehensive review. *Ageing Research Reviews*, 2024, 99: 102389.
- [9] SHARMA H, CHANDRA P. Challenges and future prospects: a benefaction of phytoconstituents on molecular targets pertaining to Alzheimer's disease. *International Journal of Pharmaceutical Investigation*, 2023, 14(1): 117-126.
- [10] SHADAB S, RAO GK, PALIWAL D, et al. A comprehensive review of herbal medicines for the treatment of Alzheimer's disease. *Current Traditional Medicine*, 2024, 10(5): 1-19.
- [11] SINGH MK, SHIN Y, JU S, et al. Comprehensive overview of Alzheimer's disease: etiological insights and degradation strategies. *International Journal of Molecular Sciences*, 2024, 25(13): 6901.
- [12] ADHIKARY K, SARKAR R, CHOWDHURY SR, et al. An overview on pathophysiology and therapeutic approaches of Alzheimer's disease and Parkinson's disease. A Review on Diverse Neurological Disorders. Amsterdam: Elsevier, 2024: 235-247.
- [13] BEHERA A, DHARMLINGAM JOTHINATHAN MK. Artificial intelligence transforms the future of oncology care. *Journal of Stomatology, Oral and Maxillofacial Surgery*, 2024, 125(4): 101915.
- [14] SANJIVKUMAR M, SILAMBARASAN T, NAGAJOTHI K.

Translation research and herbal drug development. *Translational Research in Biomedical Sciences: Recent Progress and Future Prospects*. Singapore: Springer Nature Singapore, 2024: 263–274.

[15] STOUFFER KM, GRANDE X, DÜZEL E, et al. Amidst an amygdala renaissance in Alzheimer's disease. *Brain*, 2024, 147(3): 816–829.

[16] RAUT VK, JOSHI DT, WAGHMARE DR. An overview of Indian herbs with the potential in the treatment of the Alzheimer's disease. *Journal of Pharmacognosy and Phytochemistry*, 2024, 13(3): 165–178.

[17] XUE H, LI YX, XIAO YS, et al. Repetitive transcranial magnetic stimulation for Alzheimer's disease: an overview of systematic reviews and meta-analysis. *Frontiers in Aging Neuroscience*, 2024, 16: 1383278.

[18] KUMAR R, AZAD C. Comprehensive overview of Alzheimer's disease utilizing machine learning approaches. *Multimedia Tools and Applications*, 2024, 83(37): 85277–85329.

[19] ORTEGA A, CHERNICKI B, OU G, et al. From lab bench to hope: emerging gene therapies in clinical trials for Alzheimer's disease. *Molecular Neurobiology*, 2025, 62(1): 1112–1135.

[20] AHAMAD SABM, DHULDHAJ UP. Potential plasma biomarkers for diagnosis of Alzheimer's disease: an overview. *Progress in Chemical and Biochemical Research*, 2024, 7(2): 114–128.

[21] RADOSINSKA D, RADOSINSKA J. The link between matrix metalloproteinases and Alzheimer's disease pathophysiology. *Molecular Neurobiology*, 2025, 62(1): 885–899.

[22] VICENTE-ZURDO D, ROSALES-CONRADO N, LEÓN-GONZÁLEZ ME. Unravelling the *in vitro* and *in vivo* potential of selenium nanoparticles in Alzheimer's disease: a bioanalytical review. *Talanta*, 2024, 269: 125519.

[23] HUANG YY, GAN YH, YANG L, et al. Depression in Alzheimer's disease: epidemiology, mechanisms, and treatment. *Biological Psychiatry*, 2024, 95(11): 992–1005.

[24] YANG PP, SHUAI W, WANG X, et al. Mitophagy in neurodegenerative diseases: mechanisms of action and the advances of drug discovery. *Journal of Medicinal Chemistry*, 2025, 68(4): 3970–3994.

[25] MAURYA P, PATHAK D, GUPTA R, et al. Traditional herbal approaches used for neurological disorders. *The Nature of Nutraceuticals*. New York: Apple Academic Press, 2024: 393–405.

[26] SARASWAT I, GOEL A. Herbal remedies for hepatic inflammation: unravelling pathways and mechanisms for therapeutic intervention. *Current Pharmaceutical Design*, 2025, 31(2): 128–139.

[27] GONÇALVES PB, SODERO ACR, CORDEIRO Y. Natural products targeting amyloid- β oligomer neurotoxicity in Alzheimer's disease. *European Journal of Medicinal Chemistry*, 2024, 276: 116684.

[28] CHEN ZH, WANG XR, DU SM, et al. A review on traditional Chinese medicine natural products and acupuncture intervention for Alzheimer's disease based on the neuroinflammatory. *Chinese Medicine*, 2024, 19(1): 35.

[29] ANG JJ, LOW BS, WONG PF. Dopamine and central dopaminergic circuitry in neurodegenerative diseases: roles and mechanisms of action of natural phytochemicals. *Pharmacological Research-Natural Products*, 2024, 3: 100050.

[30] SHABBIR MA, NAVEED M, MANZOOR M, et al. Therapeutic application of natural products in Alzheimer's disease using computational methods. *Computational and Experimental Studies in Alzheimer's Disease*. Boca Raton: CRC Press, 2024: 138–154.

[31] REZAUL ISLAM M, AKASH S, MURSHEDUL ISLAM M, et al. Alkaloids as drug leads in Alzheimer's treatment: mechanistic and therapeutic insights. *Brain Research*, 2024, 1834: 148886.

[32] WANG HJ, YAN Z, YANG WJ, et al. A strategy of monitoring acetylcholinesterase and screening of natural inhibitors from *Uncaria* for Alzheimer's disease therapy based on near-infrared fluorescence probe. *Sensors and Actuators B: Chemical*, 2025, 424: 136895.

[33] LI GY, CHEN DY. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. *Journal of Separation Science*, 2024, 47(1): e2300712.

[34] YADAV V, MYTHRI C, KUMARASAMY M. Natural products as potential modulators of pro-inflammatory cytokines signalling in Alzheimer's disease. *Brain Behavior and Immunity Integrative*, 2024, 5: 100048.

[35] KHABIYA R, KARATI D, DWIVEDI S, et al. The promising role of bioactive congeners present in *Cassytha filiformis* in Alzheimer's disease: an explicative review. *Brain Disorders*, 2024, 13: 100125.

[36] NAIR PG, DIXIT AK, DIXIT D, et al. Natural products from selected medicinal plants as potential therapeutics in Alzheimer's disease. *Studies in Natural Products Chemistry*. Amsterdam: Elsevier, 2024: 79–113.

[37] NGUYEN-THI PT, VO TK, PHAM THT, et al. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. *3 Biotech*, 2024, 14(3): 68.

[38] PATEL K, PATEL DK. Biological potential and therapeutic effectiveness of pteryxin in medicine. A viable alternative to current remedies for the treatment of human disorders. *Pharmacological Research-Modern Chinese Medicine*, 2024, 10: 100405.

[39] MALIK J, MANDAL SC, CHOUDHARY S, et al. Herbal medicines for management of Alzheimer's disease. *Role of Herbal Medicines*. Singapore: Springer Nature Singapore, 2023: 231–250.

[40] SARKAR B, RANA N, SINGH C, et al. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. *Naunyn-Schmiedeberg's Archives of Pharmacology*, 2024, 397(8): 5483–5511.

[41] SIVALINGAM AM, SURESHKUMAR DD. Exosomes in regulating miRNAs for biomarkers of neurodegenerative disorders. *Molecular Neurobiology*, 2025, 62(6): 7576–7596.

[42] SIVALINGAM AM. Advances in understanding biomarkers and treating neurological diseases—role of the cerebellar dysfunction and emerging therapies. *Ageing Research Reviews*, 2024, 101: 102519.

[43] ZHANG JF, ZHANG YL, WANG JX, et al. Recent advances in Alzheimer's disease: mechanisms, clinical trials and new drug development strategies. *Signal Transduction and Targeted Therapy*, 2024, 9(1): 211.

[44] GUO XY, YAN L, ZHANG DH, et al. Passive immunotherapy for Alzheimer's disease. *Ageing Research Reviews*, 2024, 94:

102192.

[45] PERNECZKY R, DOM G, CHAN A, et al. Anti-amyloid antibody treatments for Alzheimer's disease. *European Journal of Neurology*, 2024, 31(2): e16049.

[46] RAJKUMAR M, DAVIS PRESLEY SI, MENAA F, et al. Biosynthesis and biological activities of magnesium hydroxide nanoparticles using *Tinospora cordifolia* leaf extract. *Bioprocess and Biosystems Engineering*, 2024, 47(12): 2111-2129.

[47] NOORI T, DEHPOUR AR, SUREDA A, et al. Role of natural products for the treatment of Alzheimer's disease. *European Journal of Pharmacology*, 2021, 898: 173974.

[48] SABARATHINAM S, SATHEESH S, RAJA A. Plant-based medicines in the treatment of cardiometabolic disorders: a special view on sarcopenic obesity. *Obesity Medicine*, 2023, 41: 100497.

[49] CHEN SY, GAO Y, SUN JY, et al. Traditional Chinese medicine: role in reducing β -amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of Alzheimer's disease. *Frontiers in Pharmacology*, 2020, 11: 497.

[50] NGUYEN K, HOFFMAN H, CHAKKAMPARAMBIL B, et al. Evaluation of rivastigmine in Alzheimer's disease. *Neurodegenerative Disease Management*, 2021, 11(1): 35-48.

[51] CHEN X, DREW J, BERNEY W, et al. Neuroprotective natural products for Alzheimer's disease. *Cells*, 2021, 10(6): 1309.

[52] KEHOE PG, TURNER N, HOWDEN B, et al. Safety and efficacy of losartan for the reduction of brain atrophy in clinically diagnosed Alzheimer's disease (the RADAR trial): a double-blind, randomised, placebo-controlled, phase 2 trial. *The Lancet Neurology*, 2021, 20(11): 895-906.

[53] BURNS DK, ALEXANDER RC, WELSH-BOHMER KA, et al. Safety and efficacy of pioglitazone for delaying cognitive impairment in Alzheimer's disease: a phase 3 trial. *The Lancet Neurology*, 2021, 20(7): 537-547.

[54] ROJAS-GARCÍA A, FERNÁNDEZ-OCHOA Á, DE LA LUZ CÁDIZ-GURREA M, et al. Neuroprotective effects of agri-food by-products rich in phenolic compounds. *Nutrients*, 2023, 15(2): 449.

[55] SHARIFI-RAD J, RAPPOSELLI S, SESTITO S, et al. Multi-target mechanisms of phytochemicals in Alzheimer's disease: effects on oxidative stress, neuroinflammation and protein aggregation. *Journal of Personalized Medicine*, 2022, 12(9): 1515.

[56] DUBEY S, SATHYAN AC, YADAV PR, et al. Exploring the safety of ayurvedic mercurial preparation "rasa sindura": a scoping review of *in vitro* and *in vivo* studies. *Toxicology and Environmental Health Sciences*, 2024, 16(3): 341-352.

[57] LEE D, SHEN AM, GARBUZENKO OB, et al. Liposomal formulations of anti-alzheimer drugs and siRNA for nose-to-brain delivery: design, safety and efficacy *in vitro*. *The AAPS Journal*, 2024, 26(5): 99.

[58] SIVALINGAM AM, SURESHKUMAR DD, PANDURANGAN V. Cerebellar pathology in forensic and clinical neuroscience. *Ageing Research Reviews*, 2025, 106: 102697.

[59] YAN XR, YANG YF, HUANG WL, et al. Beneficial effects of the herbal medicine Zuogui Wan in a mice model of Alzheimer's disease via Drp1-mediated inhibition of mitochondrial fission and activation of AMPK/PGC-1 α -regulated mitochondrial bioenergetics. *Journal of Ethnopharmacology*, 2025, 342: 119425.

[60] CHRISTOPHER SELVAM D, DEVARAJAN Y, RAJA T. Exploring the potential of artificial intelligence in nuclear waste management: applications, challenges, and future directions. *Nuclear Engineering and Design*, 2025, 431: 113719.

[61] KHAN H, BANGAR A, GREWAL AK, et al. Caspase-mediated regulation of the distinct signaling pathways and mechanisms in neuronal survival. *International Immunopharmacology*, 2022, 110: 108951.

[62] AKHTAR U, SALEEM M, SHAHID A, et al. Phytochemicals as cancer immunotherapeutics: bridging natural compounds and advanced treatment strategies. *Scholars Academic Journal of Biosciences*, 2025, 13(1): 164-176.

[63] HLATSHWAYO S, THEMBALE N, KRISHNA SBN, et al. Extraction and processing of bioactive phytoconstituents from widely used South African medicinal plants for the preparation of effective traditional herbal medicine products: a narrative review. *Plants*, 2025, 14(2): 206.

[64] SARAVANAN S, BABU NA, LAKSHMI T, et al. Leveraging advanced technologies for early detection and diagnosis of oral cancer: warning alarm. *Oral Oncology Reports*, 2024, 10: 100260.

[65] TEJA PK, MITHIYA J, KATE AS, et al. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. *Phytomedicine*, 2022, 96: 153890.

[66] HAMPEL H, CARACI F, CLAUDIO CUELLO A, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer's disease. *Frontiers in Immunology*, 2020, 11: 456.

[67] MUTHAMIZH S, BALACHANDRAN S, DILIPAN E. Comment on "a brief virtual reality intervention for preoperative anxiety in adults". *Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology*, 2025, 139(4): 488-489.

[68] ANWAR DM, EL-SAYED M, REDA A, et al. Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes. *Expert Opinion on Drug Delivery*, 2021, 18(11): 1609-1625.

[69] THANGAVELU L, ALTAMIMI ASA, GHABOURA N, et al. Targeting the p53-p21 axis in liver cancer: linking cellular senescence to tumor suppression and progression. *Pathology, Research and Practice*, 2024, 263: 155652.

[70] GAO Q, FENG J, LIU WC, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. *Advanced Drug Delivery Reviews*, 2022, 188: 114445.

[71] VAOU N, STAVROPOULOU E, VOIDAROU CC, et al. Interactions between medical plant-derived bioactive compounds: focus on antimicrobial combination effects. *Antibiotics*, 2022, 11(8): 1014.

[72] TAHERI-ARAGHI S. Synergistic action of antimicrobial peptides and antibiotics: current understanding and future directions. *Frontiers in Microbiology*, 2024, 15: 1390765.

[73] WANG RC, WANG ZX. Precision medicine: disease subtyping and tailored treatment. *Cancers*, 2023, 15(15): 3837.

[74] YAN HY, FENG LN, LI MQ. The role of traditional Chinese medicine natural products in β -amyloid deposition and tau protein hyperphosphorylation in Alzheimer's disease. *Drug Design, Development and Therapy*, 2023, 17: 3295-3323.

[75] HOEBEN A, JOOSTEN EAJ, VAN DEN BEUKEN-VAN

EVERDINGEN MHJ. Personalized medicine: recent progress in cancer therapy. *Cancers*, 2021, 13(2): 242.

[76] COSKUN A, ERTAYLAN G, PUSPARUM M, et al. Advancing personalized medicine: integrating statistical algorithms with omics and nano-omics for enhanced diagnostic accuracy and treatment efficacy. *Biochimica et Biophysica Acta Molecular Basis of Disease*, 2024, 1870(7): 167339.

[77] RODRIGUES JJPC, SIKKANDER ARM, TRIPATHI SL, et al. Healthcare applications of computational genomics. *Computational Intelligence for Genomics Data*. Amsterdam: Elsevier, 2025: 259-278.

[78] POHL F, LIN PKT. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: *in vitro*, *in vivo* and clinical trials. *Molecules*, 2018, 23(12): 3283.

[79] MISHRA PK, SINGH KK, GHOSH S, et al. Future perspectives on the clinics of Alzheimer's disease. *A New Era in Alzheimer's Research*. Amsterdam: Elsevier, 2025: 217-232.

[80] SIMUNKOVA M, ALWASEL SH, ALHAZZA IM, et al. Management of oxidative stress and other pathologies in Alzheimer's disease. *Archives of Toxicology*, 2019, 93(9): 2491-2513.

[81] MONTEIRO AR, BARBOSA DJ, REMIÃO F, et al. Alzheimer's disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. *Biochemical Pharmacology*, 2023, 211: 115522.

[82] BAGGA S, KUMAR M. Current status of Alzheimer's disease and therapeutic targets. *Current Molecular Medicine*, 2023, 23(6): 492-508.

[83] SRIVASTAVA S, AHMAD R, KHARE SK. Alzheimer's disease and its treatment by different approaches: a review. *European Journal of Medicinal Chemistry*, 2021, 216: 113320.

[84] MÉNDEZ-VIDAL C, BRAVO-GIL N, PÉREZ-FLORIDO J, et al. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. *Journal of Translational Medicine*, 2025, 23(1): 86.

[85] ZHANG HQ, WEI W, ZHAO M, et al. Interaction between A β and tau in Alzheimer's pathogenesis. *International Journal of Biological Sciences*, 2021, 17(9): 2181.

[86] SANTIAGO JA, POTASHKIN JA. The impact of disease comorbidities in Alzheimer's disease. *Frontiers in Aging Neuroscience*, 2021, 13: 631770.

[87] TAHAMI MONFARED AA, PHAN NTN, PEARSON I, et al. A systematic review of clinical practice guidelines for Alzheimer's disease and strategies for future advancements. *Neurology and Therapy*, 2023, 12(4): 1257-1284.

[88] ENOGIERU AB, MOMODU OI. African medicinal plants useful for cognition and memory: therapeutic implications for Alzheimer's disease. *The Botanical Review*, 2021, 87(1): 107-134.

[89] GUL R, JAN H, LALAY G, et al. Medicinal plants and biogenic metal oxide nanoparticles: a paradigm shift to treat Alzheimer's disease. *Coatings*, 2021, 11(6): 717.

[90] HASSAN NA, ALSHAMARI AK, HASSAN AA, et al. Advances on therapeutic strategies for Alzheimer's disease: from medicinal plant to nanotechnology. *Molecules*, 2022, 27(15): 4839.

[91] DURAIRAJAN SSK, SELVARASU K, BERA MR, et al. Alzheimer's disease and other tauopathies: exploring efficacy of medicinal plant-derived compounds in alleviating tau-mediated neurodegeneration. *Current Molecular Pharmacology*, 2022, 15(2): 361-379.

[92] CHOUDHURY A, SINGH PA, BAJWA N, et al. Pharmacovigilance of herbal medicines: concerns and future prospects. *Journal of Ethnopharmacology*, 2023, 309: 116383.

[93] PANDEY SN, RANGRA NK, SINGH S, et al. Evolving role of natural products from traditional medicinal herbs in the treatment of Alzheimer's disease. *ACS Chemical Neuroscience*, 2021, 12(15): 2718-2728.

[94] SUGIANTO P, FERRIASTUTI W, RITARWAN K, et al. Medicinal plants—a promising breakthrough in the management of Alzheimer's disease progression compared to NSAID: a systematic review. *Bali Medical Journal*, 2022, 11(3): 1982-1986.

[95] JOHN OO, AMARACHI IS, CHINAZOM AP, et al. Phytotherapy: a promising approach for the treatment of Alzheimer's disease. *Pharmacological Research-Modern Chinese Medicine*, 2022, 2: 100030.

[96] TUZIMSKI T, PETRUCZYNIK A. Determination of anti-Alzheimer's disease activity of selected plant ingredients. *Molecules*, 2022, 27(10): 3222.

[97] TAQUI R, DEBNATH M, AHMED S, et al. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer's disease. *Phytomedicine Plus*, 2022, 2(1): 100184.

[98] BEEBE S. Herbal medicine regulation, adverse events, and herb-drug interactions. *Integrative Veterinary Medicine*. Hoboken: Wiley, 2023: 79-84.

[99] KUSHWAH S, MAURYA NS, KUSHWAHA S, et al. Herbal therapeutics for Alzheimer's disease: ancient Indian medicine system from the modern viewpoint. *Current Neuropharmacology*, 2023, 21(4): 764-776.

[100] THAKRAL S, YADAV A, SINGH V, et al. Alzheimer's disease: molecular aspects and treatment opportunities using herbal drugs. *Ageing Research Reviews*, 2023, 88: 101960.

[101] HUNG NH, QUAN PM, SATYAL P, et al. Acetylcholinesterase inhibitory activities of essential oils from Vietnamese traditional medicinal plants. *Molecules*, 2022, 27(20): 7092.

[102] LUTHRA R, ROY A. Role of medicinal plants against neurodegenerative diseases. *Current Pharmaceutical Biotechnology*, 2022, 23(1): 123-139.

草药疗法治疗阿尔茨海默病的神经保护机制与认知增强潜力综述

Dharmalingam Kirubakaran*

Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India

【摘要】阿尔茨海默病 (AD) 是一种进行性神经退行性疾病，主要表现为记忆丧失和认知功能下降。当前药物疗法疗效有限，且常伴随副作用。近年来，基于药用植物中神经保护活性化合物的发现，越来越多的研究关注用于治疗 AD 的药用植物。本文综述了对 AD 治疗有潜在作用的药用植物，主要包括银杏、姜黄、睡莲和人参。这些药用植物在减少炎症、氧化应激和 β -淀粉样蛋白沉积方面显示出治疗潜力，其所含的生物活性化合物，如黄酮类和生物碱，可能有助于促进记忆并延缓 AD 的进展。然而，将临床前成功转化为临床疗效仍面临重大挑战，如植物成分不稳定、无统一标准制剂、缺乏大规模临床试验及监管障碍等问题，均阻碍了草药疗法应用于主流 AD 治疗方案。通过严格的科学验证和标准化治疗方案以解决上述挑战，对于推动药用植物在神经退行性疾病管理中的应用至关重要。

【关键词】阿尔茨海默病；神经保护机制；药用植物；植物化学成分；氧化应激