o E R LR MR 2% A& http:/www.biother.org

+ 978 - Chin J Cancer Biother, Sep. 2020, Vol. 27, No. 9
. ‘A}‘x .
DOI1:10.3872/j.issn.1007-385x.2020.09.003 £5$ ‘GT 7U

IncRNA SNHGS5 £ R &5 S AT 4R 4R RE R 2 A X % e 1EH

FARA I RBRIE, 2o @, FAES R, P AL R F(BERBRFF—WEER HILNA, &G
%4 710061)

4 ZE]1 a6 .55 K% 1% RNA (long non-coding RNA, IncRNA) SNHG5 7E Bl 417 3 AT 41 il J# (hepatocellular carcinoma,
HCO)4fE 22 FT e h VEH . ok - IREE 2017 4F 1 & 2018 4F 6 H 16 %2 200 K24 58— & I B = AR IR 1 20 51 HCC #23%
e 5 55 L bR A, LR N HCC 4l & HepG2 . MHCC-97L .MHCC-97HHuh7 A7k A AL A T4 LO2. Fl R A 49045 B 2051
MR EF S KT 1a(hypoxia-inducible factor 1o, HIF-1a) 5 SNHG5 K45 & 47 5, # pCMV-HIF-10. shRNA-SNHG5 (sh-SNHG5)
JFCHL % ek HCC 40 e, Fl qPCR 746 HCC 2 23R4 26444 HCC 41 fiid Fh SNHGS {383 7K °F- , il Western botting £ il HCC 41
Jitd Fh HIF-1a 25 2235 7K 7, ] Transwell /) % A M 0 2R SNHGS Ji5 8 U B4 2248 % HCC 4 4= 78 K3 72 Bk 1 (K 50
2 K 0 S S AL LU LO2 4 L , HCC 2L 2R %40 i /& 7 SNHGS RIA /KT 8535 L (3 P<0.01) . H& T i HCC 41
o SNHGS5 35 7K1, H ML AT #8585 4k HIF-10 55 SNHGS J& 3 1 45 & M AR 3E 2 3 St 5%, B 550 A % 1 58 HepG2
A MHCC-97L 40 Jifd (1) 228 J 3T 4% R F1 (1 P<0.01) , YT Bk SNHGS FA A5 5 B A1 N HepG2 FIMHCC-97L 40 g [ {228 A7
ERRE 71 (3 P<0.0D. £ & : SNHGS f/EHCC 44 K 4l R P R ik, IR S I HOC AR 28 Sad B h R IE 2R A .
[XHER]  KEEIESIY RNA ; SNHGS s 41 s s HepG2 4 il s MHCC-97L 4 il s G4 s 1258 s 1T 7%
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Role of IncRNA SNHGS in the migration and invasion of hypoxia-induced hyhepa-
tocellular carcinoma cells

LI Yarui, GUO Dan, CHEN Yifei, WANG Ruhua, LU Guifang, REN Mudan, LU Xinlan, HE Shuixiang (Department of Gastroenterology,
the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China)

[Abstract] Objective: To explore the regulatory effect of long non-coding RNA (IncRNA) SNHGS5 on invasion and migration of
hypoxia-induced hepatocellular carcinoma (HCC) cells. Methods: A total of 20 pairs of cancer and para-cancerous tissue specimens
resected from HCC patients in the First Affiliated Hospital of Xi'an Jiaotong University from January 2017 to June 2018, and human
HCC cell lines (HepG2, MHCC-97L, MHCC-97H , Huh7) as well as immortalized human liver LO2 cells were collected for this study.
Bioinformatics methods were used to analyze the binding sites between hypoxia-inducible factor 1o (HIF-10) and SNHGS. pCMV-
HIF-1o and shRNA-SNHGS (sh-SNHGS) plasmids were transfected into HCC cells, respectively. qPCR was used to detect the expres-
sion level of SNHGS in HCC tissues and hypoxia-induced HCC cells. Western botting was used to detect the expression level of HIF-1a
protein in HCC cells, and Transwell chamber method was used to detect the migration and invasion ability of HCC cells after SNHGS si-
lence under normoxia and hypoxia condition. Results: Compared with para-cancerous tissues and immortalized human liver LO2 cells,
the expression of SNHGS5 was significantly up-regulated in HCC tissues and cell lines (all P<0.01). Hypoxia promoted the expression
level of SNHGS in HCC cells, and its mechanism might be related to the combination of hypoxia-activated HIF-1a and SNHGS5
promoter to promote its transcription. Hypoxia promoted the invasion and migration ability of HepG2 and MHCC-97L cells (all P<
0.01), but knockdown of SNHGS significantly inhibited the invasion and migration ability of HepG2 and MHCC-97L cells under hy-
poxic conditions (all P<0.01). Conclusion: SNHGS5 is highly expressed in HCC tissues and cell lines and plays an important role in the
invasion and migration of HCC cells induced by hypoxia.
[Key words] long non-coding RNA (IncRNA); SNHGS; hepatocellular carcinoma (HCC); HepG2 cell; MHCC-97L cell; hopoxia;
invasion; migration
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1.1 #AZ4RAR . i 7 R £ 25
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Xf R 55 bR A, F ARARAAE Y B 5 B B Tl
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41 i

DMEM 4 g 3% 77 3 DL 2 5 %5 3R - 8 3% 0 1 56
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B BR 2 ] 5 1005 53057 6 SR 2 0% 5 & PCR
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7, 4 1% 5 A F la (hypoxia-inducible factor 1a,
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Fig.1 The expression of SNHGS in HCC tissues (A) and cell lines (B)
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