Environmental Health and Toxicology 2013;28(1):e2013003-
Appropriate In Vitro Methods for Genotoxicity Testing of Silver Nanoparticles.
Ha Ryong KIM 1 ; Yong Joo PARK ; Da Young SHIN ; Seung Min OH ; Kyu Hyuck CHUNG
Affiliations
Keywords
Bacterial reverse mutation test; Comet assay; Genotoxicity; Micronucleus assay; Silver nanoparticles
Country
Republic of Korea
Language
English
MeSH
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
Abstract
OBJECTIVES: We investigated the genotoxic effects of 40-59 nm silver nanoparticles (Ag-NPs) by bacterial reverse mutation assay (Ames test), in vitro comet assay and micronucleus (MN) assay. In particular, we directly compared the effect of cytochalasin B (cytoB) and rat liver homogenate (S9 mix) in the formation of MN by Ag-NPs. METHODS: Before testing, we confirmed that Ag-NPs were completely dispersed in the experimental medium by sonication (three times in 1 minute) and filtration (0.2 microm pore size filter), and then we measured their size in a zeta potential analyzer. After that the genotoxicity were measured and especially, S9 mix and with and without cytoB were compared one another in MN assay. RESULTS: Ames test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains revealed that Ag-NPs with or without S9 mix did not display a mutagenic effect. The genotoxicity of Ag-NPs was also evaluated in a mammalian cell system using Chinese hamster ovary cells. The results revealed that Ag-NPs stimulated DNA breakage and MN formation with or without S9 mix in a dose-dependent manner (from 0.01 microg/mL to 10 microg/mL). In particular, MN induction was affected by cytoB. CONCLUSIONS: All of our findings, with the exception of the Ames test results, indicate that Ag-NPs show genotoxic effects in mammalian cell system. In addition, present study suggests the potential error due to use of cytoB in genotoxic test of nanoparticles.
备案号: 11010502037788, 京ICP备10218182号-8)