Experimental Neurobiology 2012;21(2):75-82
doi:10.5607/en.2012.21.2.75
Capsaicin Blocks the Hyperpolarization-Activated Inward Currents via TRPV1 in the Rat Dorsal Root Ganglion Neurons.
Jiyeon KWAK 1
Affiliations
Keywords
capsaicin; DRG neuron; hyperpolarization-activated cation current; rat
Country
Republic of Korea
Language
English
MeSH
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
Abstract
Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, prolonged exposures of capsaicin will cause desensitization to nociceptive stimuli. Hyperpolarization-activated cation currents (Ih) contribute to the maintenance of the resting membrane potential and excitability of neurons. In the cultured dorsal root ganglion (DRG) neurons, we investigated mechanisms underlying capsaicin-mediated modulation of Ih using patch clamp recordings. Capsaicin (1 microM) inhibited Ih only in the capsaicin-sensitive neurons. The capsaicin-induced inhibition of Ih was prevented by preexposing the TRPV1 antagonist, capsazepine (CPZ). Capsaicin-induced inhibition of Ih was dose dependent (IC50= 0.68 microM) and partially abolished by intracellular BAPTA and cyclosporin A, specific calcineurin inhibitor. In summary, the inhibitory effects of capsaicin on Ih are mediated by activation of TRPV1 and Ca(2+)-triggered cellular responses. Analgesic effects of capsaicin have been thought to be related to desensitization of nociceptive neurons due to depletion of pain-related substances. In addition, capsaicin-induced inhibition of Ih is likely to be important in understanding the analgesic mechanism of capsaicin.
备案号: 11010502037788, 京ICP备10218182号-8)