Biomolecules & Therapeutics 2015;23(5):421-427
doi:10.4062/biomolther.2015.023
Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells.
Kyu Tae JEONG 1 ; Eujin LEE ; Na Young PARK ; Sun Gun KIM ; Hyo Hyun PARK ; Jiean LEE ; Youn Ju LEE ; Eunkyung LEE
Affiliations
Keywords
Leukotriene C4; Prostaglandin D2; Cytosolic phospholipase A2; Mitogen-activated protein kinases; Phospholipase Cgamma1
Country
Republic of Korea
Language
English
MeSH
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
Abstract
Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene C4 (LTC4) and prostaglandin D2 (PGD2)) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent LTC4 and cyclooxygenase-2-dependent PGD2 through the inhibition of intracellular calcium influx/phospholipase Cgamma1, cytosolic phospholipase A2/mitogen-activated protein kinases and/or nuclear factor-kappaB pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.
备案号: 11010502037788, 京ICP备10218182号-8)