Chinese Journal of Integrated Traditional and Western Medicine 2012;32(7):965-969
Effects of tanshinone IIA on Wnt/beta-catenin signaling pathway of high glucose induced renal tubular epithelial cell transdifferentiation.
Bao-Ying HUANG 1 ; Luo-Yuan CAO ; Xian-Guo FU
Affiliations
Country
China
Language
Chinese
MeSH
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
ACTIONS
Abstract
OBJECTIVETo observe the expressions of Wnt/beta-catenin and the effects of tanshinone IIA (TII A) on Wnt/beta-catenin signaling pathway in high glucose induced renal tubular epithelial cell transdifferentiation.
METHODSHuman kidney proximal tubular epithelial cells (HK-2) were divided into three groups, i. e., the normal glucose group, the high glucose group, and the high glucose plus tanshinone IIA group. The expression of beta-catenin was observed using immunocytochemical staining. The protein expression of beta-catenin, E-cadherin, and alpha-smooth muscle actin (alpha-SMA) were detected by Western blot. The mRNA levels of beta-catenin and E-cadherin were detected by RT-PCR.
RESULTSCompared with the normal glucose group, both the protein and the mRNA expressions of beta-catenin were significantly enhanced (P < 0.01), the expression of E-cadherin significantly decreased (P < 0.01), the expression of beta-catenin increased in the cytoplasm and nucleus in the high glucose group. TIIA at the final concentration of 100 micromol/L significantly reduced the ectopic expression of beta-catenin. At that concentration, the protein and mRNA expressions of beta-catenin in the nucleus significantly decreased, while the protein and mRNA expressions of E-cadherin were up-regulated. Meanwhile, the expression of alpha-SMA obviously decreased.
CONCLUSIONSWnt/beta-catenin signaling pathway participated in the high glucose induced renal tubular epithelial cell transdifferentiation. TIIA inhibited the transdifferentiation process possibly through down-regulating the activities of Wnt/beta-catenin signaling pathway, thus further playing a role in renal protection.
备案号: 11010502037788, 京ICP备10218182号-8)